
Context-aware Automatic Service
Selection

Thesis Submitted for the degree of

Doctor of Philosophy

at the University of Leicester.

by

Hong Qing Yu

Department of Computer Science

University of Leicester.

May 2009

Abstract

Service-Oriented Architecture (SOA) is a paradigm for developing next gener-

ation distributed systems. SOA introduces an opportunity to build dynami-

cally configurable distributed systems by invoking suitable services at runtime,

which makes the systems being more flexible to be integrated and easily to be

reused. With fast growing numbers of offered services, automatically identify-

ing suitable services becomes a crucial issue. A new and interesting research

direction is to select a service which is not only suitable in general but also

suitable towards a particular requester’s needs and services context at runtime.

This dissertation proposes an approach for supporting automatic context-

aware service selection and composition in a dynamic environment. The main

challenges are: (1) specifying context information in a machine usable form; (2)

developing a service selection method which can choose the adequate services

by use the context information; (3) introducing context-awareness into the ser-

vice composition process. To address the challenges, we employ Semantic Web

technology for modelling context information and service capabilities to auto-

matically generate service selection criteria at runtime. Meanwhile, a Type-

based Logic Scoring Preference Extended (TLE) service selection method is

developed to adequately and dynamically evaluate and aggregate the context-

aware criteria. In addition, we introduce the composition context and a Back-

ward Composition Context based Service Selection algorithm (BCCbSS) for

composing suitable services on the fly in a fault-tolerant manner.

Furthermore, this dissertation describes the design and implementation of the

method and algorithm. Experimental evaluation results demonstrate that the

TLE method and BCCbSS algorithm provide an efficient and scalable solution

to deal with the context-aware service selection problem both in single service

selection and composition scenarios. Our research results make a further step

to develop highly automated and dynamically adaptive systems in the future.

i

Declaration

The studies outlined in this dissertation were undertaken in the Department

of Computer Science, University of Leicester and supervised by Dr. Stephan

Reiff-Marganiec. I declare that this dissertation is my own account of my

research and contains as its main content work which has not previously been

submitted for a degree at any tertiary institution. All of the work submitted

for assessment is my own and expressed in my own words. Any use made

within it of works of other authors in any form are properly acknowledged at

their point of use.

Research work presented in some sections has been previously published, in

particular: the idea of context-awareness process (Chapter 3) has been pub-

lished in [YRM09a], the specifications for non-functional property based ser-

vice selection (Chapter 2) has been published in [YRM08b], the Type-based

Logic Scoring Preference extended service selection method is published in

[YRM08a], and the idea of composition context is published in [YRMT08].

There are some further publications of the author which are referenced in the

appropriate chapters.

Hong Qing Yu

Leicester, UK May 2009

ii

Acknowledgements

I would like to express my profound gratitude to my supervisor: Dr. Stephan

Reiff-Marganiec for his valuable suggestions, encouragement, and fantastic su-

pervision throughout my PhD research work. His moral support and contin-

uous guidance enabled me to complete my research work successfully. I also

highly thank Dr. Emilio Tuosto, Dr. Fer-Jan de Vries, Prof. Jose Fiadeiro and

Prof. Reiko Heckel, for their second opinions on my work and opportunities

working with them on European projects. Thanks are also made to all my

colleagues in the Department of Computer Science in Leicester for their sup-

port and help, which makes the department being my second home away from

China.

Two European Union projects: inContext (IST-2006-034718) and SENSORIA

(IST-2005-16004) are thanked for funding this research work, which provided

my financial support over the past two and half years. In the framework of

these projects, I had some very valuable discussions with project partners and

thanks to all of you for the time spending.

I am as ever, especially indebted to my parents Mr Yu Baomin and Mrs Liu

Meizhen for their love and support throughout every aspects of my life.

Finally, I wish to express my thanks from my heart to my wife Xia for her pa-

tience and support throughout my last six years overseas studying and working.

Thank you!

Hong Qing Yu

iii

Contents

Abstract i

Declaration iii

Acknowledgements iv

1 Introduction 1

1.1 Motivating Scenarios for Context-aware Service Selection 3

1.1.1 Single service selection scenarios 4

1.1.2 Composite service selection scenarios 7

1.2 Research Challenges . 11

1.3 Overview of the Service Selection Process 14

1.4 Research Aims and Statement 15

1.5 Key Terminology and Assumptions 19

1.6 Research Methodology and Contributions 20

1.7 Dissertation Outline and Summary 22

iv

CONTENTS v

2 Research Background and Related Work 24

2.1 Overview of Service-Oriented Architecture 25

2.2 Overview of Semantic Web . 27

2.3 Overview of Context-awareness and Context Modelling 28

2.4 Service Selection and Selection Requirements 30

2.5 Related Work . 34

2.5.1 Non-context aware selection approaches 35

2.5.2 Context-aware selection approaches 41

2.6 The inContext Project Architecture 44

2.7 Summary . 47

3 Generation of Context-aware Service Selection Criteria 49

3.1 User Context Modelling . 50

3.1.1 User profile context . 52

3.1.2 Resource context . 53

3.1.3 Activity context . 55

3.1.4 Physical environment context 56

3.2 Service Data . 57

3.2.1 Service repository and category 57

3.2.2 Meta data of category 59

3.2.3 Service NFPs . 60

CONTENTS vi

3.2.4 Service register . 64

3.3 Context-aware Criteria Generation Process 65

3.4 Criteria Generation Example . 70

3.5 Summary . 72

4 Service Selection Method 74

4.1 Service Selection Method Overview 75

4.2 Type-based Criteria Evaluation Function 76

4.3 LSP-based Aggregation Function 79

4.3.1 LSP function in literature 79

4.3.2 Defining weight semantics 83

4.3.3 Separating hard criteria and soft criteria 84

4.3.4 Automatic calculation of Orness degree 85

4.4 Applying TLE method to the Notification Service Selection Sce-

narios . 88

4.5 Summary . 93

5 Backwards Composition Context based Service Selection in

Composition Scenarios 95

5.1 Composition Scenarios . 96

5.1.1 Organising a meeting . 96

5.1.2 Planning a trip . 100

CONTENTS vii

5.2 Classifications of Composition Context 101

5.3 BCCbSS: Backwards Composition Context based Service Selec-

tion . 103

5.3.1 Challenges of dynamic service selection for composition . 103

5.3.2 BCCbSS approach overview 105

5.3.3 BCCbSS optimization using TLE service selection method106

5.3.4 An example and complexity analysis 109

5.4 Contributions of BCCbSS . 113

5.5 Related Work . 115

5.6 A Worked Example . 117

5.7 Summary . 119

6 Implementation and Evaluation 122

6.1 Implementation . 123

6.2 Adequacy Evaluation . 126

6.2.1 Adequacy . 126

6.2.2 Adequacy measurement 127

6.3 Scalability Evaluation . 135

6.3.1 Single selection mode scalability 135

6.3.2 Composition mode scalability 137

6.3.3 Discussion . 140

6.4 Summary . 141

7 Conclusion 143

7.1 Research Contributions . 143

7.1.1 Context-aware criteria generation 143

7.1.2 Efficient and automatic service selection 144

7.1.3 Composition context sensitive service composition 145

7.2 Future Research Directions . 146

7.3 Concluding Remarks . 148

A An Example of OWL-S Profile for A Notification Service 150

B The Detailed Mapping Between OWL Diagram to UML Dia-

gram 154

C An Example of User’s OWL Context Information 156

Bibliography 164

viii

List of Tables

2.1 Comparison results . 43

3.1 Basic transformation relation from OWL/RDF to UML 52

3.2 SPARQL query matching table 68

4.1 Weight semantics . 83

4.2 Simultaneity example . 88

4.3 Replaceability example . 88

4.4 Selection criteria and notification service NFPs meta data . . . 90

4.5 Notification service evaluation results calculated by Type-based

evaluation functions for Bob . 91

5.1 Composition Context classifications 102

5.2 Composition context of the example conjunction with service B

(SB) . 118

5.3 The composition service selection results 119

6.1 Relevance engine . 125

ix

6.2 Selection criteria and service NFPs meta data 129

6.3 Evaluated scores for each service’s NFPs by Type-based evalu-

ation functions . 130

6.4 Test results for emergency situation 131

6.5 Two available medical support services 133

6.6 Medical support service selection results 134

x

List of Figures

1.1 Medical support service selection scenario 6

1.2 Workflow of organizing a meeting 8

1.3 Workflow of planning a travel 10

1.4 The service selection process . 14

2.1 Web services architecture [ACKM04] 26

2.2 inContext architecture . 45

3.1 Top layer user context model . 51

3.2 User profile package UML diagram 52

3.3 Resource package UML diagram 54

3.4 Activity package UML diagram 55

3.5 Physical environment package UML diagram 56

3.6 Service repository . 58

3.7 Relations between category concept and OWL-S profile ontology 59

3.8 The conceptual model of MetaData 59

xi

LIST OF FIGURES xii

3.9 OWL-S: service profile ontology 62

3.10 Service registration . 65

3.11 Criteria generation process . 69

3.12 The context-aware selection criteria for Bob 72

3.13 Components are discussed in Chapter 3 73

4.1 GCD mean operators [Duj] . 81

4.2 The conjunctive partial absorption function 85

4.3 Components are discussed in Chapter 4 93

5.1 Workflow of organizing a meeting 97

5.2 Composition complexity analysis 103

5.3 BCCbSS step 1 . 109

5.4 BCCbSS step 2 . 110

5.5 BCCbSS step 3 . 111

5.6 BCCbSS step 4 . 111

5.7 BCCbSS step 5 . 112

5.8 BCCbSS step 6 . 112

5.9 BCCbSS step 7 . 113

5.10 Components are discussed in Chapter 5 121

6.1 Implementation layers . 123

6.2 Work bench index page . 124

6.3 Service ranking results pages . 125

6.4 Create a new service category 126

6.5 Evaluation results for single service selection test case 1 136

6.6 Evaluation results for single service selection test case 2 137

6.7 Evaluation results for composition selection test case 1 139

6.8 Evaluation results for composition selection test case 2 139

6.9 Evaluation results for composition selection test case 3 140

B.1 The detailed mapping between OWL diagram to UML diagram 155

xiii

Chapter 1

Introduction

Using a mobile phone to read the English version of Chinese news in Beijing,

finding a wonderful Italian Restaurant using a PDA, or accessing an important

document that is related to your presentation via a laptop’s wireless connec-

tion are imaginable visions of pervasive computing. The most recent essential

developments of pervasive computing are the widespread deployment of in-

expensive context-aware devices and the innovations of the Service-Oriented

Architecture (SOA) paradigm. “A great number of devices and software com-

ponents collaborating unobtrusively in a smart space to provide people with

required services is becoming a reality with the advance of technology devel-

oped on internet and network” [ESB07]. On the one hand, the devices can

provide plenty of personal information that combined with other dynamic and

static data supplies context which in turn can be used to provide appropriate

services. On the other hand, SOA makes software components available as

services on demand through the Internet. Services can be invoked directly for

a simple task or can collaborate with other services for completing a complex

task.

One opportunity is to achieve context-aware automatic service provision by

combining context-aware computing with service selection. While each of the

1

2

two aspects comes with its own research challenges, the combination is a new

research area to investigate.

Context-aware computing utilises the context information to characterize the

situation of an entity. In general, context information refers to user’s dynamic

environments. For example, a user’s location can change during him/her trav-

eling; the available devices for a user might be different for different tasks.

In a service selection scenario, a user can be an active or passive client, e.g.

a person sending a message is a active client of a notification service and the

person receiving the message is a passive client. However, in a service composi-

tion scenario, the user’s context is not sufficient to select adequate services for

the composite task, because composition related context (e.g. collaboration

time, cost and errors) is also required to evaluate the collaboration efficiency.

Overall, context information from both user and services are very important

to provide the data for making the best decision when selecting services.

Automatic services provision primarily includes automatic service discovery,

selection and invocation. However, if no suitable services are available, the ad-

ditional issue of automatic services composition becomes relevant. In the last

few years, most service provision research work focused on service discovery

protocols based on the functional requirements of Input, Output, Postcon-

dition and Effects (IOPE) [ZMN05] and service invocation. Other research

has focused on service composition challenges. However, there is less research

work aiming to directly tackle the service selection problem, and even less con-

sidering automatic selection based on changing context. With the increasing

availability of services, many services provide similar or identical functionality.

Therefore, service selection becomes a crucial issue by addressing the need to

provide the users with not only “a” service, but the most suitable one. The

selection process, therefore, needs to compare the services identified as func-

tionally suitable based on user preferences of non-functional properties (NFPs).

Thus, service selection is one step beyond discovery, and it is also an essential

1.1. Motivating Scenarios for Context-aware Service Selection 3

step to enhance the service composition. However, there are many research

challenges ahead to achieve context-aware automatic service selection.

The remainder of this chapter is organized as follows. Some context-aware

service selection examples are studied to identify research challenges in Sec-

tion 1.1. Then, the research challenges will be discussed in Section 1.2. The

overall process of context-aware automatic service selection will be introduced

in Section 1.3. The research aims, objectives and statement of this dissertation

will be given in Section 1.4. The key assumptions and brief overview of the

research approach are discussed in Section 1.5. The contributions of this work

are highlighted in Section 1.6. Finally, an outline of the dissertation and a

summary of this chapter are provided in Section 1.7.

1.1 Motivating Scenarios for Context-aware Ser-

vice Selection

Service selection scenarios can be divided into two groups namely, single service

selection and composite service selection. Only one kind of service is requested

from the user to perform an autonomic task in single service selection scenarios.

All functionally appropriate services will be ranked, returning to the user a list

of suggested by services ordered ranking scores. In contrast, several different

kinds of services are demanded to be composed together for completing a

complex task is the composite service selection scenario. In the composite

service selection process, the most adequate service will be selected and invoked

directly and automatically without interaction with users.

In this section, we consider two cases for each of the scenarios. The case studies

are provided by the inContext [UF06] project.

1.1. Motivating Scenarios for Context-aware Service Selection 4

1.1.1 Single service selection scenarios

Notification service selection

Consider a scenario where a meeting has been scheduled for the next day. To

ensure all related people are notified on time, a notification service is required

to send a reminder message. Different participants may be in different context

situations including differences in locations, time zones, availability via devices,

contact preferences, online status and economic constraints of the sender, hence

different kinds of notification services are likely to be required.

Making this example more concrete, we lists 3 people to be invited to the meet-

ing in scenario. The following are summaries of their context and preferences.

1. Bob is on holiday with only his mobile phone and PDA. The holiday

location is in Spain. On holidays, Bob prefers to be contacted by PDA

rather than mobile phone message.

2. Alice has switched off her mobile phone to conserve battery power, but

she is online using IM: Instant Massager (IM is also her preferred method

of contact).

3. John is working in his UK office with access to a wide variety of com-

munication devices (mobile phone, email, IM and PDA). However, he

prefers to be contacted by email message.

Considering notification services, we are aware that there is a wide choice.

However, different notification services may have different NFPs (Non-Functional

properties). For example, one service has lower cost, but can use only one com-

munication method and covers a small area. One service may have higher cost

but good quality, the ability to use multiple communication methods and world

wide usability. Another service may be good in one or more of these features,

1.1. Motivating Scenarios for Context-aware Service Selection 5

or may introduce additional properties. The NFPs may include more aspects

of reputation, security and network permissions. Therefore, a suitable service

selection method is demanded to provide the most suitable notification service

according to certain individual’s runtime context and service NFPs.

By analysing the scenario, we see that the notification services involve two

kinds of users (a sender and a receiver). However, the context information is

related to both sides. In particular, the receiver’s context information should

be given higher priority as the receiver is the passive user of the service. Here

‘passive’ means, the receiver cannot specify the service selection criteria as

she/he does not know of the sending message event. The following research

issues can be identified from this service selection scenario: (1) automatically

reasoning about user’s runtime context information to constrain selection cri-

teria; (2) evaluating possible services against different types of criteria; (3)

dynamically and adequately aggregating the different criteria evaluation re-

sults into overall ranking scores.

Medical support service selection

The second case study comes from a medical support service selection for the

Wolverhampton fair. The fair will be held in a big park. A large number of

people are attending the fair. Different levels of incidents are expected in such

a situation. Two medical tents are prepared for providing injury aid.

Based on past experience, one tent (service 1) has more medical staff and

also has mobile staff who can provide help away from the tent. The tent is

equipped to deal with minor injuries only. The other tent (service 2) has fewer

staff but more advanced medical equipment to deal with serious incidents as

well as normal injuries. The two tents are located in different locations to the

left and right of the lake as shown in Figure 1.1. The two tents wait for the

incidents to be reported to their aid systems. Once they receive the report

1.1. Motivating Scenarios for Context-aware Service Selection 6

Figure 1.1: Medical support service selection scenario

from the fair help team, the tents will prepare for providing the medical aid.

The members of the help team are responsible to locate the incidents and use

their communication systems to report. The communication systems enable

to identify and contact the most suitable medical support service according

to the injury level, location of the incident, availability of the tent’s staff and

response time. Each service here is deployed inside a tent for receiving the

injury reports and sending back the confirmations. The service can be invoked

from the communication systems in the devices.

There are 3 typical scenarios:

1. The injury has been reported close to service 1 and it is a minor injury.

2. The injury has been reported close to service 2 and it is a minor injury.

3. The injury has been reported close to service 1 but it is a severe injury

(severe injuries raise an emergency status).

Service selection is required for the communication systems to invoke the most

suitable medical support service at runtime based on the injury context infor-

mation. In this case, the context information only refers to the active user.

1.1. Motivating Scenarios for Context-aware Service Selection 7

The context information is also more directly related to the service capabil-

ities (NFPs). The medical support service selection scenarios bring further

research issues: (1) making a direct connection between user’s context and ser-

vice NFPs, although they may be represented in different forms; (2) enabling

service selection criteria to be affected by the emergency situation where all

normal selection preferences can be broken.

1.1.2 Composite service selection scenarios

Organising a meeting

A meeting is required to be held for discussing the detailed planning of a

particular event [TRMY07]. Organising a meeting involves a series of tasks.

The tasks include searching for suitable participants, finding a suitable date,

booking a meeting room and sending invitation notifications to the partici-

pants. The meeting organiser integrates these tasks as a workflow template

(see Figure 1.2). Each task can be performed by a service.

1. The participant search task can be performed by a people-search ser-

vice. There are two available people-search services offered by different

providers. Both services have the same function of taking people require-

ment attributes, such as skills, experiences and positions to produce a

list of people as output. However, these two services have different NFPs.

One service can find the people who are in the organiser’s organisation

and is more accurate by having access to more information about people.

The other can search people who are both inside and outside the organ-

isation, but it is less accurate. Also, the first service’s response speed is

slower than the second one.

2. The date finding task can be completed by the meeting scheduling ser-

vice. Again, there are two scheduling services available offered by dif-

1.1. Motivating Scenarios for Context-aware Service Selection 8

Figure 1.2: Workflow of organizing a meeting

ferent providers. They both use people’s calendars’ URL addresses as

input and return the most suitable date for all involved people as out-

put. One scheduling service only has ability to check Google and MSN

online calendar systems and supports around 90% optimal dates (e.g. 9

people out of 10 are available on the scheduled date). The other service

has ability to check all kinds of current existing online calendar systems

and supports around 70% optimal date.

3. The room booking task can be executed by room booking services. The

booking service takes the date and facility requirements as input and

produces the place address and room information as output. There are

two booking services available. One service supports booking rooms with

normal meeting facilities. The other service supports booking rooms with

both normal facilities and advanced equipment.

4. The notification task can be performed by the notification services. There

are many services available. We already discussed the notification ser-

1.1. Motivating Scenarios for Context-aware Service Selection 9

vices as the first case study of the single service selection scenario.

In single service selection scenarios, the user’s context and preferences are the

only determining factors. These factors will called local context. In contrast,

service selection in composition scenarios also needs to consider the extra com-

position context. The composition context captures, amongst others, the col-

laboration relations among the different kinds of services, invocation policies

among them and different integration costs. Therefore, the service selection

problem becomes more complicated by having to consider both local context

and composition context.

The research questions coming from this case study are: (1) where does the

composition context come from? (2) what are the elements of the composition

context? (3) how to define the composition context? (4) how to evaluate the

composition context? (5) How to balance the local context constraints and

composition context constraints.

Planning a trip

Let us consider another typical workflow example: planning a trip. Generally,

the planning activity requires three tasks of booking transports, purchasing

travel insurance and booking hotels as shown in Figure 1.3. Moreover, pur-

chasing insurance and booking the hotel are two independent tasks but both

rely on the transport date and time.

Because many travel related services are available, the competition is tight.

1. There are many different transport services available, the local con-

straints are faster speed and cheaper price (price refers to the service

fee, not ticket price or other buying price throughout this dissertation).

1.1. Motivating Scenarios for Context-aware Service Selection 10

Figure 1.3: Workflow of planning a travel

2. There are many insurance services as well, the local constraints are

cheaper price and better reputation.

3. There are also many hotel booking services, the local constraints are the

place is covered, between 3 stars and 4 stars hotel, economic and good

reputation.

On the one hand, this workflow example needs to be completed by invoking

different services, similar to the previous case study. On the other hand,

unlike the sequential workflow of the previous one, planning a trip is a parallel

workflow. Therefore, the composite service selection problem has one more

important research issue: designing or finding a suitable service composition

mechanism which can efficiently cope with more complex composition workflow

rather than sequential workflow only.

1.2. Research Challenges 11

1.2 Research Challenges

Considering the questions arising from the scenarios, we derive 3 research

challenges which we consider in more detail next.

Context-awareness. [SAW94] highlighted the challenge to distributed com-

putation caused by changing context information and reaction to these changes.

The difficulty of addressing this problem is to cover the gap between context

information and the reaction resources. In SOA, suitable reaction resources are

the service properties (functional and non-functional) and selection methods

in the service selection domain. For example, in the notification service selec-

tion scenario, the context of an invited person being online with his/her IM

account. To correctly react to this context for service selection, we need to un-

derstand relations between “online”, “IM account” and the service properties.

Normally, the user context is modelled by client context experts while service

NFPs are defined by the service providers. Therefore, there is a gap between

the user’s context information and services’ NFPs. The research issues are:

- What is the bridge between user’s context and services’ NFPs?

- How to build the bridge?

- How can the bridge affect service selection?

Service selection method. Finding a selection method is not difficult, how-

ever, finding a selection method which can deliver the best selection result in a

dynamic, context-aware environment is difficult. Context is runtime informa-

tion which demands a runtime method, which in turn needs to be automatic

and reasonably fast. There are two difficulties: On concerns evaluating indi-

vidual criteria, the often aggregating individual scores into a comprehensive

whole. From an evaluation viewpoint, context information differs from other

data, e.g. numerical data, using different expression types, e.g. text data, to

allow people and machine to understand its meaning. Therefore, it causes the

1.2. Research Challenges 12

difficulties for automatic evaluation. From the viewpoint of aggregation, dif-

ferent services may concern different selecting constraints with different impor-

tance levels based on user context and service domain features. In particular,

the constraints are not isolated from each other but have dependent relations.

Therefore, automatically choosing a suitable aggregation function to aggregate

different aspects of the evaluation results is very difficult. [Duj07] explained 3

groups of aggregation properties: replaceability, simultaneity and mandatory.

• replaceability: if the insufficient satisfaction of one criterion in a group

can be compensated by increasing satisfaction of any other member of

the group, then such an aggregation is a model of replaceability. For

example, cost and quality are the desired criteria for the notification

service selection. If the requirement states that higher cost for a higher

quality service is fair, then this is a replaceability aggregation scenario

because a high score for quality can compensate a low score for cost.

• simultaneity: simultaneously satisfying two or more requirements is the

most frequent criterion in practical system evaluation. For example, a

car buyer typically wants a car that simultaneously satisfies criteria of

performance and safety. This means that a dangerous car must get lower

overall score even if the score for performance is outstanding.

• mandatoriness: some of the evaluation criteria are minimum require-

ments which must be satisfied. For example, if the cost of using a service

must be lower than £50, it means that any service which is more ex-

pensive than £50 must be discarded, independent of how other features

compare.

Different aggregation properties require different aggregation functions. There-

fore, the service selection raises two research issues:

1.2. Research Challenges 13

- How to evaluate the individual criterion for services in a context-aware

environment?

- How to dynamically applying the adequate aggregation function?

Composition context The context information related to service composi-

tion has not been researched and modelled. In fact, the composition context

is an important factor for ensuring an adequate service selection for service

composition. In the travel planning scenario, assuming service A and service

B have the price of £3 and £2 for adminstration fees. If we only consider the

price criteria, then service B is obviously the better choice. However, service A

supports free insurance collaboration with any other insurance services, while

service B will charge extra £2 for the collaboration. Hence overall service B

is not a good choice any more. There are many more composition context

aspects that need to be considered and they all influence adequacy of service

selection from a global point of view. Thus, the research issues are:

- What information is related to the composition context?

- How to define the composition context?

- How to use the composition context for service selection in the composition

scenarios?

The research presented in this dissertation addresses these 3 challenges. In par-

ticular, we present a novel context-aware automatic service selection method.

Based on this method, we develop a composition context focused service com-

position mechanism.

1.3. Overview of the Service Selection Process 14

Figure 1.4: The service selection process

1.3 Overview of the Service Selection Process

The complete service selection process is represented in Figure 1.4. The pro-

cess addresses the discussed research challenges by concentrating on 4 related

aspects.

The first aspect is concerned with context information and service capability

information and the category repository. The context information includes

user context (Chapter 3) and the service composition context (Chapter 5)

which are updated through data management and run-time monitoring. The

monitoring may include system logging activities, inserting and updating the

context and service information. However, the details of how to maintain the

data resources is not part of the research in this dissertation. The service capa-

bility information includes both functional and nonfunctional properties that

can be compared to context information and service selection criteria (Chapter

3). A categorising service repository is built based on the capability meta in-

1.4. Research Aims and Statement 15

formation for enhancing the service discovery and selection. The second aspect

is concerned with dynamically generating the context-aware service selection

criteria by querying the context information and service capability meta in-

formation (Chapter 3). The third aspect, one of two major contributions, is

concerned with an extended Logic Scoring Preference based service selection

method which can use the context-aware criteria to complete the service se-

lection task (Chapter 4). This has been implemented as service referred to

as relevance engine. The final aspect is the service composition mechanism,

which including the composition context, forms the second major contribution.

The mechanism takes care about the workflow requirements and fosters the

selection method to achieve the service composition task (Chapter 5).

1.4 Research Aims and Statement

The overall aims of this dissertation are developing a context-aware automatic

service selection method and a composition context based service composition

mechanism. It is useful to further divide the aims into more specific problems,

objectives and questions.

1.4. Research Aims and Statement 16

Aims

1. Generating context-aware service selection criteria.

This aim includes the modelling of user context concepts (related to

service ranking), modelling the service profile (especially including

non-functional properties) and bridging the gap between the two.

Furthermore, adaptation of selection criteria to context has to be

considered.

2. Developing an efficient and automated service selection method.

This includes the development of a suitable method which allows to rank

services based on their NFPs, taking aggregation properties and preferences

relations into account.

3. Developing an efficient service composition mechanism.

This aim includes modelling the relation between tasks to carry the data

relevant for selection from one to the other and adapting the method

from Aim 2 to also work in workflows.

There are a number of objectives that need to be met by the approach. When

we speak of “automatic”, we mean no human attention at run-time.

1.4. Research Aims and Statement 17

Objectives

1. The selection method shall be capable of dealing with a large number of

services and selection criteria (scalability in two dimensions).

2. The selection method shall automatically produce adequate final service

ranking scores by aggregating different criteria considering preferences

(different levels of importance) and preference dependency relations (agg-

regation properties).

3. The selection results shall reflect the user’s context.

4. The selection method includes evaluation functions that allow auto-

matic computation of evaluation scores for criteria. Automatically give the

evaluation scores of services for different criteria.

5. The selection method can easily be expanded to handle extra aspects,

like the composition context representing a global point of view to select

services for service composition.

6. The composition mechanism shall have low complexity to deal with

large scale composition problems.

To address the first two objectives, we need to answer the following questions.

• How many service selection methods have been proposed to deal with

similar problems?

• What are the pros and cons of these existing methods?

• Have these existing methods met our criteria and important aggregation

1.4. Research Aims and Statement 18

properties? If they do not, which improvements or new selection theories

are required?

• How can we measure scalability?

• How can we measure the adequacy?

• What does adequacy mean here?

To fulfil the third objective, three particular questions should be answered.

• How is the context information modelled, stored and retrieved?

• What types of user context relates to which service selection criteria?

• How can the context related criteria be dynamically affected?

Regarding the fourth objective of combining automatic evaluation functions

for different types of criteria, two research questions should be considered:

• How are the context/property values of service represented in real world

scenarios?

• How can the evaluation functions be dynamically mapped to the different

types of services’ context representations?

The last two objectives are related to the following research questions.

• What kinds of composition context criteria should be considered during

service composition?

• How can this context information be detected and used?

1.5. Key Terminology and Assumptions 19

• What are the current strategies or mechanism for services composition?

Are these suitable for our purpose? If not, how can we define a new

service composition mechanism?

In this dissertation, we address all these questions, however, some aspects are

considered in greater depths.

Thesis Statement

Providing the right service at the right time is a major challenge in

Service-Oriented Computing. We show that a context-aware automatic

service selection method and a composition context-aware service

composition mechanism are feasible and practical.

1.5 Key Terminology and Assumptions

To ensure a focus on the outlined research aims, objectives and questions,

some crucial terminology and assumptions have to be made. Some of these

assumptions may already have efficient solutions, some are under active in-

vestigation by others. Some of these assumptions may not very realistic at

the moment, but they have already been proposed as future research focuses.

Furthermore, in the young field of SOA different researchers use some terms in

slightly different ways. To avoid ambiguity we present our use of the relevant

terms.

1. In the current implementation, a service might provide several operations

which perform different tasks, however, we consider operation as the core

concept and hence “service” will mean a single operation which only

performs one task at a time.

1.6. Research Methodology and Contributions 20

2. Service is used in a quite general way, it not only refers to Web Service

– recall the example of the medical tent.

3. Non-functional property descriptions for all services are available using

OWL-S (Web Ontology Language for Services) [MBH+04].

4. The terminologies of ontology variables are unified, which means, there

are no conflicting or unclear concepts and variables.

5. We assume all services are registered in a centralized repository and

categorized by functional keywords.

6. Service discovery is a simple process such as key word based or ontol-

ogy based discovery focused on functional property. In this dissertation

service selection and composition are steps considered beyond service

discovery, and hence we assume a suitable discovery mechanism to be in

place.

7. Context is modelled and stored using OWL/RDF [Org04b, PS06] tech-

nology. We assume that context information is centrally stored as our

focus is not on retrieving context, but rather using it.

8. “Service composition” refers to instantiating abstract workflows. The

service composition workflows are predefined using an orchestration lan-

guage (e.g. WS-BPEL [Org07a] or Windows Workflow Foundations

[Cor07]) and deployed in the composition task template store [TYRM+08].

1.6 Research Methodology and Contributions

We use the case study based research methodology. Our research began with

analysing the real world service selection and composition scenarios. The sce-

narios were proposed by the industry research partners of the “inContext”

1.6. Research Methodology and Contributions 21

project. Based on the case studies, the selection and composition require-

ments are represented and defined. For successfully achieving the require-

ments, we investigate currently proposed selection and composition methods

from literature and we develop an automatic Type-based Logic Scoring Prefer-

ence Extended (TLE) service selection method and a Backward Composition

Context-based Service Selection (BCCbSS) algorithm.

The main contributions of this dissertation are:

• A technique for automated generating context-aware service selection

criteria as the bridge for linking user context information to the service

non-functional properties (Chapter 3).

• A service selection method based on type-based evaluation functions and

automatic Logic Scoring Preference [Duj73] functions. The type-based

functions can be automatically applied to evaluate the different types of

evaluation criteria. The automatic Logic Scoring Preference functions

solves the user’s preferences-based selection issue considering both pref-

erences and aggregation properties (Chapter 4).

• Based on the context-aware composition scenarios, the composition con-

text concept is defined. Additionally, we define an extensible composition

context information category (Chapter 5).

• The BCCbSC (Backward Composition Context based Service Selection)

algorithm using the TLE service selection method is developed. It is

efficient and suitable for the context-aware environment, in particular

addressing the issues of using composition context (Chapter 5).

• A test simulation system is implemented. The system implements the

proposed method and algorithm to evaluate adequacy and scalability

(Chapter 6).

1.7. Dissertation Outline and Summary 22

1.7 Dissertation Outline and Summary

This chapter discussed the purposes of the dissertation - addressing context-

aware service selection and composition problem. We explained the crucial

challenges of combining context awareness and service selection through both

single service and composite service selection scenarios. In order to draw our

research border, we listed the interesting research aims, objectives with their

related questions and provided focus with a clear thesis statement. The key

assumptions and terminology were explained. In addition, we highlighted our

research contributions in the previous section.

The reminder of this dissertation is organised as follows:

• In Chapter 2, we give a more detailed description of the research back-

ground. Specifically, we are going to discuss the related work on service

selection and the “inContext” research project which gave a wider frame

to this research. We are also going to introduce some basic concepts

which form the foundations for this research such as SOA and context-

aware computing.

• In Chapter 3, we illustrate a way to automatically generate context-

aware service selection criteria. The Chapter includes a discussion of

user context model, service categorization, criteria generation and im-

plementation.

• In Chapter 4, we focus on the service selection method. More precisely,

the mathematic foundations of the LSP method and type-based evalua-

tion function are going to be explained. The strengths of our selection

method is illustrated with a worked example.

• In Chapter 5, we extend our context-aware selection method by defining

and adding the service composition context for enhancing service selec-

1.7. Dissertation Outline and Summary 23

tion in workflows. Furthermore, a Backward Composition Context-based

Service Composition mechanism is introduced.

• In Chapter 6, we introduce our prototype implementation and discuss

system evaluation results for service selection adequacy and scalability.

• In Chapter 7, we provide a concluding discussion and identify potential

future research directions.

Chapter 2

Research Background and

Related Work

In chapter 1, we discussed the research motivations, scenarios, aims and ob-

jectives of context-aware automatic service selection. Our work fits into a

wider context set by SOA, Semantic Web and Context-aware computing. It

addresses the important aspect of service selection which has been considered

only marginally in these fields as we have indicated. The author was involved in

the inContext project during the research. In this project automatic context-

aware service selection is highly demanded and thus it has been a testbed for

many of our ideas. This chapter will discuss the research background and

related work, which is divided into 6 sections.

The literature on Service-Oriented Architecture, Semantic Web and context-

awareness and context modeling are introduced in Section 2.1, 2.2 and 2.3

respectively. Section 2.4 discusses the service selection issue and its require-

ments. Section 2.5 discusses current related work on context-aware service

selection approaches and compares them to the requirements. Section 2.6 pro-

vides details about the inContext project. Section 2.7 draws the conclusion

for the chapter.

24

2.1. Overview of Service-Oriented Architecture 25

2.1 Overview of Service-Oriented Architecture

The first Service-Oriented Architecture for many people in the past was with

the usages of DCOM [Red97] or Object Request Brokers (ORBs) based on the

CORBA [Gro04] specification.

One of the SOA definitions given by the SOA Open Working Group is [oTOG06]:

“A paradigm for organising and utilising distributed capabilities that may be

under the control of different ownership domains. It provides a uniform means

to offer, discover, interact with and use capabilities to produce desired effects

consistent with measurable preconditions and expectations.”

SOA includes at least three elements: Application Frontends (also called ser-

vice requester or client), Services (also known as providers) and Services Repos-

itories (sometime seen as service broker) [KBS04].

Application Frontends initialize and control all activities of the enterprise

system.

Services are software components with distinctive functional meaning that

typically encapsulates a high-level business concept.

Service Repositories provide facilities to discover services and acquire all

information necessary to use the services.

Web services is one of the most widely used implementation and standard

nowadays to implement SOA. The Web services architecture mainly includes

three parties mapping to SOA as shown in Figure 2.1.

Enabling services to be discovered, service providers must firstly publish the

services to the UDDI (Universal Description, Discovery and Integration) repos-

itory [Org04a]. The service requesters is then able to find services from the

2.1. Overview of Service-Oriented Architecture 26

Figure 2.1: Web services architecture [ACKM04]

UDDI descriptions. To invoke a service the requester needs to know the in-

teraction interface of the service. This invocation information is provided

by the WSDL (Web Service Description Language) [Org07c] service descrip-

tion which forms part of the UDDI contents. The communication between

requester and service is accomplished through SOAP (Simple Object Access

Protocol)[Org07b] messages conveyed using HTTP with an XML serialization

in conjunction with other Web-related standards.

Web services, however, is only one implementation of SOA. Any paradigm

that performs all the features of SOA can be a SOA implementation. In this

dissertation, the term “Service” is not limited to Web services.

“SOA is a flexible, standardised model with a deeply rooted concept of en-

capsulating application logic within services to better support the integration

of various applications and the sharing of data” [Erl04]. The goal of SOA is

to allow fairly large chunks of functionality to be composed together to form

ad hoc applications that are built almost entirely from existing software ser-

vices. However, to achieve the goal, SOA still faces many challenges. Service

selection is one of these challenges. In this dissertation, we contribute to a

possible solution for service selection is combination with context-awareness

and service composition.

2.2. Overview of Semantic Web 27

2.2 Overview of Semantic Web

The Semantic Web is envisioned as an extension of the current web where, in

addition to be human-readable using WWW browser, documents can be anno-

tated with meta-information which defines what the information is about in a

machine processable way [DFvH03]. Currently, the crucial part of the Seman-

tic Web technology is Description Logic (DL) based ontology language such as

OWL (Web Ontology Language) [Org04b] or WSMO (Web Service Modeling

Language) [Gro05]. These ontology languages include two layers based on the

Description Logic namely, TBox and ABox. The TBox specifies the concep-

tional presentation model of a description domain and ABox is the container

of the individual information according to TBox specifications [BCM+08]. For

example, TBox is defined as ontology syntax and ABox is defined as RDF syn-

tax in OWL language. Both syntaxes are build on the top of XML language,

therefore Semantic Web technology gives us a capability for describing, stor-

ing the information or entities. The semantic information enables machine to

access, read and compute. There are three major advantages to use Semantic

Web technology:

Efficient reasoning: because Semantic Web is based on DL, information rea-

soning is every efficient by applying DL inference theories through open

world assumptions [HPSMW08]. We can get more facts from the rea-

soned results, which is the most differences from other information mod-

elling and storing technologies.

Structure independent query language: currently, the query language for

OWL is the SPARQL [PS06] query language. Unlike other query lan-

guages (e.g. SQL) which are tightly coupled to the information structure,

SPARQL is independent from information structure. For example, if we

query an age value of a given name in database system, we need to know

the database name and table name in order to query the data. However,

2.3. Overview of Context-awareness and Context Modelling 28

SPARQL does not require this information to perform a query, which

is done only by specifying the RDF triple statement. Therefore, the

query codes do not need to be changed when the information structure

is modified which often happens in the dynamic environment.

Distributed information sharing mechanism: as the name implies, the

information modelled and stored by the Semantic Web is distributed

over the Internet. The sharing mechanism is the same as Web technology

identifying the URL for information resources. As a result, it becomes

more simple and efficient to access the information decentralised than

traditional database data sharing mechanisms.

In this dissertation, user context and service properties are modelled and stored

as OWL and OWL-S technologies. The detail information about the models

and the way to use it will be discussed in Chapter 3.

2.3 Overview of Context-awareness and Con-

text Modelling

Context-aware Computing is concerned with enriching computing envi-

ronments with concepts that can improve interaction and ultimately increase

productivity and reduce the burden on users. The key concepts in this area

are context modelling and context-awareness. Context is formally defined by

[DA99] as “any information that can be used to characterize the situation of

an entity. An entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and

the application themselves.” Meanwhile, Context-awareness is defined as “a

property of a system that uses context to provide relevant information and/or

service to the user, where relevance depends on the user’s task.” [DA99]

2.3. Overview of Context-awareness and Context Modelling 29

Context is a powerful and longstanding concept in human-computer interac-

tion. As human beings, we can more efficiently interact with each other by fully

understanding the context in which the interactions take place. It is difficult

to enable a machine to understand and use the context of human beings.

Nowadays, the notion of context is much more widely appreciated. The term

context-aware is generally defined by those working in ubiquitous/pervasive

computing, where “it is a key to the effort of dispersing and enmeshing com-

putation into our lives. Consequently, context also refers more to the physical

and social situation in which computational devices are embedded” [MD01].

One major task in context-aware computing is to acquire and utilise informa-

tion about the context of a user in order to provide the most adequate services.

The service should be appropriate to the particular person, place, time, event,

etc where it is required. A user may be a person who uses the service or who

is the target object of a service. For example, a cell phone could always vi-

brate and never ring in a concert, if the system knows the location of the cell

phone and the concert schedule. However, this is more than a simple ques-

tion of gathering more and more information about complex situations. More

information is not necessarily more helpful [MD01]. What makes the context

information more useful is to relate it to the tasks and activities, to organize

it well and to increase its utility.

In this dissertation we use context information as one of the important factors

for service selection. In order to achieve this aim, we establish a context model

which is efficiently to be used for service selection process.

Context modelling is demanded for the wide range of heterogeneous context

information in context-aware computing. It helps application designers and

developers to uncover the possible context and simplify the context manipu-

lation [RDN05]. The model can be very helpful in providing quality context

information. For example, conflicts can be resolved by favoring the classes of

2.4. Service Selection and Selection Requirements 30

context that are most reliable over those that are more often subject to error

(sensed and derived).

The conceptual viewpoints of context models summarised by [RDN05] include:

who, where, what occurs, when, what can be used and what can be obtained.

Most researchers follow the model categorization from a conceptual viewpoint.

For instance, [NP05] proposed to put context information into five semantic

dimensions (categories): identity (who), location (where), time (when), activ-

ity (what) and devices profile (how). The classes in their context model are

put into five sub-packages: ActorSet (who are the actors for the interaction?),

LocationSet (where does it happen?), TimeSet (when does it start or finish?),

ActivitySet (what are they intend to do?) and ProfileSet (how do actors do

that?). A similar proposal is provided by [RPC+04] as “People”,“Places and

Location”, “Devices” and ”Services”.

The ultimate purpose of context modeling, however, is not only to categorise

the context information but also to introduce a way to use context informa-

tion efficiently. In our dissertation, the context model is implemented using

Semantic Web technology of OWL/RDF and its query language SPARQL for

information retrieval. OWL can be considered as the conceptual model and

RDF is the instant context data of the model.

2.4 Service Selection and Selection Require-

ments

Service selection is a process of allowing a prospective user to choose services

which best suit his/her functional and non-functional requirements [DLP].

With the rapidly growing number of available services, users are presented

with a choice of functionally similar (or even identical) competitive services.

Therefore, this choice strongly depends on the NFPs that provide differences

2.4. Service Selection and Selection Requirements 31

among competitive services. Service selection can be performed by two types

of methodologies:

1. Static service selection. The service(s) discovery and selection are manu-

ally conducted through the service discovery protocols (e.g. UDDI) and

human readable NFP presentations. Once the service is selected, it will

hardly be changed in the future.

2. Automatic service selection. The service(s) are dynamically discovered

and selected based on machine understandable representations (e.g. OWL-

S or WSMO) and run-time collected service requirement constraints. The

selected service is only used once. When new requirements come next

time, a different service may be used.

Automatic service selection is one of the important goals of the SOA. However,

it is a very complex task because of various different types of non-functional

properties and uncertainties of the runtime environment. Apart from context-

awareness, the major requirements for service selection methods based on

NFPs are as follows [YRM08b].

Model for non-functional properties: Service requesters or passive users

need to objectively distinguish services based on their non-functional

properties to make the most appropriate choice amongst a number of

services with equal or similar functionality. In the light of that a model

for non-functional properties is required, which can be used in service

descriptions as well as service requests. Due to the versatility of non-

functional properties (and the fact that new ones might be required at

any time), it is unlikely that a complete standard set can be identified.

Non-functional properties should be considered differently depending on

the specific service domain. For instance, the printing service domain

2.4. Service Selection and Selection Requirements 32

should consider print speed, color-options, location, quality and price

properties. Financial service, in contrast, should consider security, pri-

vacy and performance properties. Furthermore, the selection method

build on top of the non-functional property model must be generic enough

to be able to work with additional properties (possibly using additional

information provided through the model).

Properties’ preferences: Service requesters usually have various preferences

for the non-functional properties depending on the situation they find

themselves in, and of course different situation will mostly have different

preferences. A good mechanism should not only express values for each

property, but preferably also represent the relations among the pref-

erences. For example, in the emergency situation, a financial service

may require to consider the security property as more important than

privacy. Hence, the selection approach needs to provide mechanism to

specify preferences for different situations and service domains.

Evaluation of properties: As we discussed earlier, it is difficult to predict

how many non-functional properties will be available, as well as the types

of these properties. For example, the evaluation function to compute

the speed criteria will be very different from the function to calculate

the location criteria. It is imposible to define a universal evaluation

function for all kinds of non-functional properties. Hence, the evaluation

framework must not only adapt to various numbers of non-functional

properties, but also automatically identify the measurement methods

that should be used to evaluate each non-functional property.

Dynamic aggregation: When all desired non-functional properties can be

evaluated, the next important step is to aggregate individual scores to

gain a final score for the service. In this step a suitable aggregation

method needs to be selected. Intuitively, arithmetic or geometric means

based on weighted sums or products might appear to be an efficient and

2.4. Service Selection and Selection Requirements 33

understandable choice. Unfortunately, sticking to one of them all time

is not the best choice for complex situations with tens or even hundreds

of evaluation criteria. For example, the aggregation may consider both

speed and price to be mandatory criteria, the aggregation results should

reflect the preference to score 0 for not satisfying any one of these cri-

teria. This aggregation feature can not be gained through summation,

but a product aggregation function would solve this issue. Meanwhile, in

reality there are more complicated issues than just mandatory and op-

tional criteria. With large numbers of criteria, it is easy that extremely

high value measured selection criteria with a low weight can overshadow

or replace values of other factors with higher weights (and hence higher

importance). One way to completely solve above two issues is to use

a adequate aggregation function for different aggregation requirements.

We have discussed it as one of the major challenges in Chapter 1. We

define such kind of requirements as aggregation properties with three

different dimensions of replaceability, simultaneity and mandatory. The

aggregation function should enable to consider both the criteria prefer-

ences and the aggregation properties among different criteria to control

the replacement/overshadow level. Correctly choosing the aggregation

function can be done by analysing the service selection scenarios man-

ually. However, manual aggregation function selection will heavily de-

crease automatic level service selection, particularly with context-aware

requirements. Therefore, it is important that the aggregation functions

are chosen automatically to best match the aggregation requirements.

Automation: Service selection can be performed by a human to look up suit-

able services in a registry and make decisions as to which one to choose

(as a matter of fact, this is currently often common practice). However,

the ultimate goal of service selection research, and especially service se-

lection based on non-functional properties, is to provide fully automatic

2.5. Related Work 34

processes. A service designer would still specify data for the service when

making it available, and a user would still be able to specify requirements,

but the selection would be performed without human intervention. Such

automatic selection methods are essential when, for example, considering

context-aware service selection (where requirements are automatically

generated, and change rapidly) or selection of services within workflow

contexts (essentially allowing for the execution of “abstract” processes

where specific service endpoints are not predefined). We have discussed

two points of automation in previous requirements. One is the selection

of evaluation functions for specific non-functional criteria, the other is

the selection of adequate aggregation function. For context-awareness,

automatically using context information to affect the service selection is

also one aspect of automation.

Scalability and accuracy: Scalability here not only means that the approach

can consider large numbers of properties, but also means many selection

processes are taking place simultaneously. Scalability can not be mea-

sured independently from selection accuracy and automation level. We

have just discussed the automation requirements, there is also a question

on how accurate the result is. While one would aim for perfect accuracy

(that is one has proveably chosen the best service), it is often sufficient

to choose a good enough service if the decision can be made quickly.

2.5 Related Work

In recent years there have been many efforts dedicated to develop approaches

for service selection based on NFPs. Some approaches touched the concern of

context information. It is clear that much progress has been made, and by

considering the individual approaches there is some overlap in functionality,

but obviously some divergence. In this section, we will discuss and compare

2.5. Related Work 35

some proposed selection approaches against the requirements that was made

in the previous section.

2.5.1 Non-context aware selection approaches

We firstly discuss service selection approaches that do not consider context

and distinguish them into 3 dimensions and 6 categories.

Policy vs reputation

Policy based service selection approaches allow to specify the non-functional

requirements by coding them in a QoS (Quality of Service) policy model or

policy language. [LNZ04] and [JS07] are typical examples of policy based

selection approaches.

The QoS policy model in [LNZ04] is designed as a textual document. It offers

two types of non-functional properties: generic and domain specific. The do-

main specific properties are extensions of the generic ones for different kinds of

services. The content of the policy model represents the service requester’s non-

functional constraints and preferences. It also defines two universal evaluation

functions (one is used for the case where a lower value benefits the requester

and the other is for the opposite case) to evaluate the service’s non-functional

properties against the policy model. The relations between the non-functional

criteria are expressed in a matrix, which is also used for their aggregation.

There are some disadvantages of this approach. Firstly, it is difficult to formal-

ize all the non-functional criteria in order to allow overall score computation.

Secondly, all the non-functional properties have to be presented as numbers

or be converted into that format. Thirdly, while it captures how to express

requirements, there is no mention of where and how the properties’ value is

stored and expressed. Fourthly, the matrix aggregation function is difficult to

2.5. Related Work 36

be understood by users and does not show the relation of user’s preferences at

all. Finally, the final ranking scores do not reflect the satisfaction level that

can be expected from the service as the overall range of values is not specified.

A similar approach is introduced in [JS07]. The improvement is that it for-

malises the NFPs into a conditional policy language. The other differences

is that the service properties are dynamically detected by hardware sensors

that monitor whether the selected service breaks the requester’s requirements.

However, this feature limits the number of properties for practical reasons (it

is only possible to monitor a small range of properties). This technique could,

however, be very useful combined with a selection strategy that uses service

execution history.

In contrast to the policy based approaches, there are a number of approaches

based on trust and reputation presented in [WV07] and [GGD07].

The web service selection criteria presented in [WV07] is statically defined for

all kinds of services and each criterion is linked to a trust and reputation ty-

pology. The values of the criteria for different services are collected through

the typology based feedback from communities or agencies. The selection pro-

cesses are different based on the classification of trust and reputation systems

which might be centralised or decentralised. For example, a centralized repu-

tation system may use a PageRank [PBMW98] selection function. A similar

idea is proposed in [GGD07], but using IRS-III [DCG+06] selection methodol-

ogy based on ontology mapping technology to calculate the ranking scores. All

of these approaches focus on evaluating the selection criteria based on trust –

that is whoever provides the values for the services is a trusted party. However,

there has not been any uptake of these approaches for real world problems

because of the complexity and time consuming manner for establishing the

trust/reputation community – a system similar to certificate agencies might

be required. Furthermore, the proposals do not present service evaluation and

2.5. Related Work 37

aggregation functions or consider the requester’s preferences.

Although the approaches in this category introduce two interesting aspects,

namely capturing user requirements by policies and relying on observations of

the services before making decisions, there are some common shortcomings.

• They do not define a model of expressing service properties – they assume

that the values of service properties are simply available somewhere.

• They do not consider the evaluation functions to different criteria – they

all define a unified function for all kinds of non-functional properties

(which is not practical in general as the properties vary widely).

• They do not consider aggregation functions in detail, simply assuming

that this is not an issue (but we have mentioned earlier that this is a

complex matter in itself if large numbers of criteria are considered to

have complex aggregation properties).

UDDI-extensions vs Semantic Web Services

In order to address the issues of modelling and using service’s properties, some

research projects have investigated extensions to UDDI and Semantic Web

services technologies.

[SJS05] and [AMM07] proposed two similar types of UDDI extensions for ser-

vice selection. [SJS05] adds an extra component in the SOA called Quality

broker which sits between the service requester and UDDI repository. The

Quality broker randomly invokes the services which are registered in the UDDI

repository through the WSDL endpoint and in this way monitors the perfor-

mance (response time and throughout), safety (availability and reliability) and

cost. In this approach all kinds of service selection problems only consider these

three non-functional properties and hence do not allow additional properties,

2.5. Related Work 38

for example domain specific ones. Likewise, the approach uses a simple three

value approach for representing the match to the required properties: gold,

silver and bronze. Two utility functions representing the gains for service re-

quester and provider are composed by linear programming following equations

2.1 to 2.3. In the functions, xi is the monitored value of the i-th criterion and

vi is a universal evaluation function, which means all xi are calculated by the

same function and are assumed to be numerical values.

Moreover, wr
i and wp

i are possibly different as they represent importance con-

siderations from requester and provider. Consequently, the LinearFunction

(equation 2.3) matches the result between requirements and offers. It is not

obvious why the service with the highest score is the best one to be selected. It

represents the best overall score, but is almost certainly not requester optimal.

RequesterUtility =
n∑

i=1

wr
i v

r
i (xi), 0 ≤ RequesterUtility ≤ 1. (2.1)

ProviderUtility =
n∑

i=1

wp
i v

p
i (xi), 0 ≤ ProviderUtility ≤ 1. (2.2)

LinearFunction = RequesterUtility + ProviderUtility. (2.3)

A similar system has been proposed in [AMM07]. The differences are (1) the

Quality broker is a database which can be queried by giving the names of de-

sired functional and non-functional properties; (2) the aggregation function is

a simple function summing all desired properties; and (3) the criterion evalu-

ation function is a universal function designed to measure a weighted distance

of each value from the maximum value for the criterion.

The two basic disadvantages of the UDDI based approaches are:

2.5. Related Work 39

• The service data and the quality information are separated. Therefore,

the service provider needs to register details of their service in more than

one place or the quality broker has to dynamically monitor the registered

services. These limit the number of criteria as monitoring is expensive

and impractical and the broker would somehow need to be aware of any

new service added.

• There is no extensible service quality model, which means that the ap-

proaches are restricted for selections based on a few predefined, generic

criteria.

With these disadvantages in mind, some work has been conducted to define

nonfunctional models for web services using Semantic Web Service (SWS) tech-

nology. [WVKT] introduced a WSMO (Web service Modeling Ontology) based

approach. The non-functional properties are organized as QoS ontology and

vocabulary in WSMO. However, its evaluation functions do not make use of the

full power of the SWS technology because all values have to be numerical num-

ber without considering the semantics of vocabulary at all. [MT05] enhances on

this by introducing a DAML-S based service selection approach. In [MT05],

the matching algorithm uses the semantics of the vocabulary by introduc-

ing concepts of {Exact, P lugin, Subsumption, Container, PartOf,Misjoint}

matching.

Graphic vs ontology-based preference modelling

It is also important to consider how users can best express their needs. How-

ever, previously discussed approaches address the providers perspective service

selection in some sense, little attention is paid to the requester. It is important

to express non-functional properties from both provider and requester.

To that end, a graphical preference modelling and service selection approach

2.5. Related Work 40

has been discussed in [SBS+07], where the preferences are modelled as TCP

network graph [BDS06] or UCP network graph [BBB01]. These network graphs

not only present simple importance relations among different non-functional

properties but also model the dependency relations between them. For ex-

ample, “colour=true” might be the most important criterion for selecting a

printing service outweighing price and quality. However, if there is a colour

printing service available, then price is more important than quality, otherwise,

quality is more important. Although this might sound trivial, it is a situation

that one would naturally consider in many decisions. Hence, being able to

capture it in a aggregarion way for service selection is a huge achievement.

The graph based modelling approach has a big disadvantage when graphs be-

come very complex and difficult to understand for an average user. Moreover,

the selection algorithm is based on simple textual matching without making

use of a model for NFPs. It is less extensible and cannot deal with hierarchi-

cally structured properties.

[MS04] and [LASG07] present two approaches which use ontology modelling

techniques to model both the requester’s requirements and service properties.

In [MS04], the selection algorithm is quite simple by only selecting a service

which fully match the requester’s requirements using the Exact match concept.

In contrast, [LASG07] uses a price based evaluation method. The method is

proven to be a NP-complete.

The ontology modelling approaches only solve the first part of capturing the

requester’s preference by formally specifying the considered selection criteria

with semantic vocabulary and a classification structure. Unlike the graph

modelling approach, they do not model the aggregation properties.

2.5. Related Work 41

2.5.2 Context-aware selection approaches

The selection approaches introduced in section 2.4.1 do not consider contextual

information at all to select the most appropriate service for the user. Some

other research work has been conducted to support context-aware service se-

lection.

Location, which was introduced in the Cooltown project [Pac04, RT06] and Jini

[KEKW04] present the earlier context information used to utilize the service

selection. The work can discover and select the service nearest to the user.

Nevertheless, the context information is only the location context.

The improvements have been illustrated later by [CKL05] and [LH03]. They

extended the context information by adding so called Dynamic and Static

Service Attributes. The dynamic service attributes are those characteristics of

a service whose values change over time. Otherwise the attribute is said to be

static. Since there are more than one context constraints, they also introduced

the Weighted Vector based aggregation functions for ranking the services and

returning the top matches to the user. However, there are two main drawbacks:

1. Their work relies on a syntactic representation of contextual informa-

tion of services. Consequently, it is impossible to apply more advanced

semantic level searching, matching and reasoning.

2. They all only focus on modelling services’ attributes/context informa-

tion without specifying the user’s context information. Thus, context-

awareness in this sense means service attributes awareness.

[ESB07] realises the first issue and tackles the issue by utilising concepts from

the Semantic Web. However, it does not address the second problem of mod-

elling user context constraints at all.

2.5. Related Work 42

From a totally opposite research approach, [SVC+03] makes a lot of effort

on defining user’s context information in detail and identifies nine categories:

User information, Personal Information, Activity Information, Social Informa-

tion, User Defined Rules, Environment Information, Application Information,

Terminal Information and Network information. However, their architecture

is concerned with providing the information to service developers to build suit-

able new services in order to satisfy these context constraints.

In conclusion, current context-aware service selection approaches do not build

the bridge to fill the gap between user’s context and service’s NFPs. Few of

them give the clear picture of using user’s context information for generating

the service selection criteria/constraints.

Having presented a number of methods for service selection, we will now pro-

vide an overall comparison between these by considering whether they match

the requirements (see Table 2.1). We will use two types of comparsion val-

ues: yes/no to show whether the approach achieved the requirement, and low,

average, high to indicate at what level the approach reaches the requirement.

2.5. Related Work 43

N
F

P
m

o
d
el

P
re

fe
re

n
ce

s
m

o
d
el

E
va

lu
at

e
A

gg
re

ga
ti

on
A

u
to

m
at

io
n

S
ca

la
b
il
it

y
C

on
te

x
t

Y
.

L
iu

ye
s

av
er

ag
e

n
o

lo
w

lo
w

av
er

ag
e

n
o

H
.

J
an

ic
ke

n
o

av
er

ag
e

n
o

lo
w

lo
w

lo
w

n
o

Y
.W

an
g

n
o

lo
w

n
o

av
er

ag
e

lo
w

h
ig

h
n
o

S
.

G
al

iz
ia

ye
s

lo
w

n
o

lo
w

lo
w

h
ig

h
n
o

Y
.J

.
S
eo

n
o

av
er

ag
e

n
o

av
er

ag
e

av
er

ag
e

lo
w

n
o

E
.

A
l-

M
as

ri
u
n
k
n
ow

n
av

er
ag

e
n
o

lo
w

av
er

ag
e

h
ig

h
n
o

X
.

W
an

g
ye

s
lo

w
n
o

av
er

ag
e

av
er

ag
e

h
ig

h
n
o

U
.S

.
M

an
ik

ra
o

ye
s

lo
w

ye
s

h
ig

h
av

er
ag

e
av

er
ag

e
n
o

C
.

S
ch

ro
p
fe

r
ye

s
h
ig

h
n
o

h
ig

h
lo

w
lo

w
n
o

E
.M

.
M

ax
im

il
ie

n
ye

s
av

er
ag

e
n
o

lo
w

h
ig

h
h
ig

h
n
o

S
.

la
m

p
ar

te
r

ye
s

av
er

ag
e

n
o

av
er

ag
e

h
ig

h
lo

w
n
o

C
o
ol

to
w

n
-H

P
n
o

lo
w

ye
s

lo
w

av
er

ag
e

av
er

ag
e

ye
s

S
.

C
u
d
d
y

ye
s

lo
w

n
o

lo
w

lo
w

av
er

ag
e

ye
s

A
-R

.
E

l-
S
ay

ed
ye

s
lo

w
n
o

lo
w

av
er

ag
e

av
er

ag
e

ye
s

I.
S
y
gk

ou
n
a

n
o

h
ig

h
u
n
k
n
ow

n
u
n
k
n
ow

n
lo

w
u
n
k
n
ow

n
ye

s

T
ab

le
2.

1:
C

om
p
ar

is
on

re
su

lt
s

2.6. The inContext Project Architecture 44

The table shows that most of the approaches lack flexible and automatic map-

ping methods for evaluating properties. Moreover, the level of expressing

meaningful preferences is low. However, the usage of Semantic Web or on-

tology technologies has a huge advantage for addressing preference modelling

and services non-functional properties. The other significant downside is short

of dynamic aggregation methodology and automation process. By analyzing

the current service selection approaches, we found that most of them are de-

signed to address just one or a few aspects of the overall service selection

problem.

2.6 The inContext Project Architecture

The “inContext” project is designated to support a context-aware environment

for team collaboration. The major module in the project is the PCSA (Perva-

sive Collaboration Services Architecture) platform . The PCSA acts as a server

for User Agent to consume collaboration services. It is a key enabler of SOA,

and can be seen as a management and execution environment which enables

discovery, registration, selection, and invocation of services, in a context-aware

way. Five high level components are included in the platform (see Figure 2.2):

Access Layer, User, Team and Role Manager, Service Management, Context

provider, and Data and Patterns Mining.

• The access Layer is the single access point of inContext Platform exposed

to User Agent and other PCSAs. It handles user authentication and

authorization as part of the login procedure. It provides unified APIs for

User Agent to lookup and invoke services as well as service registration.

The unified APIs make it easier for User Agent to interact with the

inContext platform. Only the Access Layer is visible from User Agent

point of view.

2.6. The inContext Project Architecture 45

Figure 2.2: inContext architecture

• The User, Team and Role Manager manages information regarding user

account, team members, etc. This information is vital for the PCSA. How

a user uses the collaboration services (authentication/authorisation); what

type of collaboration environment he/she is in; how he/she is supported

in his/her collaboration activities. To answer all these questions, where

the User and Group Management needs to be involved. Typically, the

Access Layer interacts with the User and Group Management to process

user authentication and authorization. Service Management interacts

with it to provide relevance-based service discovery and composition.

Context Management interacts with it to acquire user and team related

context. Collaboration services interact with it to act in a more adaptive

way.

• The Service Management is the component to manage all the operational

aspects related to Collaboration Services. It supports service registra-

tion, discovery, composition and execution. Furthermore, with support

2.6. The inContext Project Architecture 46

from Context Management and User and Group Management, it pro-

vides relevant and a proactive interface to Service Management. The

relevance mechanism aims to dynamically provide collaboration services

to user which are considered relevant in his/her current context. Proac-

tive mechanism aims to anticipate user’s future requirements and to au-

tomatically provide the most relevant services to him/her.

• Context provider manages collaboration related context information, in-

cluding user context, team context, device context, environment context,

etc. Context information plays a key role in the PCSA. The context is

modelled using OWL/RDF language.

• Data and Pattern Mining keeps the PCSA continuously self improving

by data mining and machine learning. It provides functions such as

management of pattern storage, collection of log data from all kinds of

sources, support for pattern retrieval for the use of other services.

The most relevant parts of the inContext project to the research presented in

this thesis are service selection and composition approaches in the Service Man-

agement component and modelling and using the context information from the

Context provider component.

The Service management component uses

• The meta data related service category repository concept which is in-

troduced in this thesis to organise the services for requesting.

• The automatic context-aware criteria generation process which is illus-

trated in this thesis to set the service selection constraints at runtime.

• Our proposed TLE method and BCCbSS algorithm to provide the suit-

able service to the Access layer.

2.7. Summary 47

The Context provider uses the user context model, service NFPs model and

service composition context model based on our simplified model presented in

chapter 3 to represent the context information which is gained by the Data

and Pattern Mining component.

However, our research work is not tightly coupled to this particular project.

Our research aim is to develop a generic context-aware service selection method-

ology. The inContext project gives us a testbed and useful resources to deliver

an evaluation of our research developments and results. Similar architectures

have been proposed for multiple and large scala agent based systems, e.g. the

Cougaar architecture. The Cougaar architecture “loads and manages soft-

ware units called components that connect to and interact with one another

through abstract interfaces” [HTW04]. Because the Cougaar architecture does

not adopt the Web service concept, the underlining message transport uses tra-

ditional RMI or UDP based protocols. The Cougaar architecture can publish

abstract interfaces via a blackboard mechanism which allows dynamic inter-

face discovery by using traditional string exactly matching techniques and it

does not have any selection method. As in the inContext project, the Cougaar

architecture requires the additional methods to enable dynamic selection inter-

faces beyond discovery. In the light of this, Cougaar could reuse our research

contributions.

2.7 Summary

SOA provides a new paradigm for organising and utilising distributed com-

ponents to offer services, discover services and interact with end-users. In

order to enrich computing environments with concepts that can improve in-

teraction and ultimately increase productivity and reduce burdens on users,

context-aware computing gives a concept to use context to provide relevant

2.7. Summary 48

information and/or service to the user. Context-aware service selection is an

important development by combining SOA and context-ware computing.

We identified 6 requirements of modelling for non-functional properties, proper-

ties preferences, automatic evaluation, dynamic aggregation, high automation,

high scalability and accuracy to develop a quality service selection method.

Additionally, these requirements are based on context-awareness.

By analysing current related research work against the requirements, we find

they lack flexible and automatic mapping methods for evaluating properties.

Moreover, the level of expressing meaningful preferences is still low and lack

of dynamic aggregation methods and automation processes. Most of the work

are designed by focusing on one or few aspects of the overall service selection

problem.

The involvement in the inContext project assists to develop a generic context-

aware service selection method to cover current research issues. From the

next chapter, we will start to illustrate the solution being contributed to the

context-aware automatic service selection and composition field.

Chapter 3

Generation of Context-aware

Service Selection Criteria

We listed three major challenges to achieve context-aware service selection in

the Chapter 1. The first one is to build the connections between context in-

formation and the service NFPs. However, user context information normally

is quite different from service NFPs and they are defined by different groups

of people. For example, the user context may specify that a user has a mo-

bile phone; but the service NFPs does not have the same description because

services may only describe what types of message they can send. Therefore,

we need a way to link “mobile phone” to “type of message”. The link is the

bridge we are looking for to develop the context-awareness. For us, the context

information consists of active and passive user context and service composi-

tion context. In this chapter, we address this challenge by only considering

the connections between user context and service non-functional properties.

We will discuss composition context of services in the composition approach

in Chapter 5. More precisely, the context-aware criteria generation process

includes three major components:

49

3.1. User Context Modelling 50

OWL/RDF based User context model defines and stores the relevant user

runtime context data which can be used for service selection.

Service repository stores different kinds of services’ information organised

by categories.

Runtime selection criteria are dynamically generated at service selection

time and link to service NFPs and user context.

All these three components will be discussed in this chapter. User context

modelling will be detailed in Section 3.1 which includes 4 context aspects.

Service Data with detailed service repository and category will be discussed

in Section 3.2. Context-aware service selection criteria generation process and

implementation techniques will be introduced in Section 3.3. Finally, an exam-

ple of context-aware criteria generation and chapter summary will be described

in Section 3.4 and 3.5 respectively.

Parts of this chapter have been published in [YRM09a] and [YHHRM07].

3.1 User Context Modelling

To ensure the selection of the most suitable service for the user, correctly mod-

elling user context is the first important step. Dey [DA99] identified problems

arising from a context modelling point of view and [Vuk07] summarised them

as 3 main requirements. Firstly, there is a need for a suitable context model,

which describes the relationships between different types and facilitates infer-

ence and abstraction of context. Secondly, quality information is necessary to

allow reasoning about the quality parameters of each context type and value,

such as accuracy of location information. Finally, a suitable, easily developed

infrastructure for context acquisition and management is required, which sep-

arates the acquisition from the utility of context.

3.1. User Context Modelling 51

Figure 3.1: Top layer user context model

Supposing there are thousands of users and each one has various items of dy-

namic context information, then it will be very difficult and expensive for a

centralized system to detect and update the context information at runtime.

Consequently, the context information requires to be distributively stored and

easily retrieved remotely. As we discussed in the related work section (Chapter

2), the OWL/RDF technologies can meet the context modelling requirements.

Thus, we use OWL to model user context information and RDF to distribu-

tively store the instant user runtime context data.

By analysing the motivating selection scenarios and context information in

general, our user context model has been divided into 4 packages of user profile,

resources, activities and physical environment (location and time) which have

shown in Figure 3.1. However, the 4 packages are not absolutely isolated

from each others. Some of them may have overlapping subproperties or they

connect to each other through their subproperties. In order to show the context

structure more clearly, the OWL context model will be represented by using

3.1. User Context Modelling 52

OWL/RDF concept UML concept
< owl : Class > Class
< owl : Property > Class Attributes
< owl : Property > General association
< rdf : domain >< rdf : range > Source and target of association
< owl : subClassOf > Class inheritance
< x rdf : ID = “X” > Instance x of class X
Instance of < rdf : Property > Instance of association

Table 3.1: Basic transformation relation from OWL/RDF to UML

Figure 3.2: User profile package UML diagram

UML class diagrams in this chapter (The basic transformation relation from

OWL/RDF to UML is listed in Table 3.1 and a more detailed explanation can

be found in Appendix B).

3.1.1 User profile context

The user profile context stores user’s personal data and contact information.

The properties are represented in Figure 3.2. The profile property has the

following subproperties.

ContactInfo class stores possible contact details of a particular person. has-

Address can store any kinds of address which defined in Physical envi-

ronment context package. hasContactDetail contains other properties

3.1. User Context Modelling 53

including hasDevice, and holdsAccount which are defined within the Re-

source package. It is notable that hasPrefer property stores the best way

to contact someone according to the person’s preference setting. These

context properties are related to the service non-functional properties of

how to contact the person and where to contact the person in a dynamic

environment.

GeneralInfo class saves the the user’s identified id, name and other status.

This context information is important to separate different users and

specify relationships among them.

Organisation class holds the information of the users’ working environment

and roles that they may play in a task. It is understandable that different

people who have different roles may require very different services for

same task. The organisation class is inherited from the friend of a friend

(foaf) ontology.

Language class shows how many languages this person knows and what level

he/she can use. In service selection aspect, this property can restrict the

values of language supporting NFP.

3.1.2 Resource context

The resource ontology (Figure 3.3) includes electronic documents which must

be stored and read on a computing device, as well as physical resource such

as communication devices and online accounts. The resource context connects

to service NFPs, such as which devices are available currently and which com-

munication type is the most fast way and so on.

ElectronicResources class is any electronic media content to be used in

their electronic form. hasDevice holds the information of what electronic

3.1. User Context Modelling 54

Figure 3.3: Resource package UML diagram

devices the user has currently. The device class also includes subclasses

of installed softwares, device capabilities and so on, which are connected

to user profile hasContactway properties. For service selection, this in-

formation is useful to support the matching between user’s electronic

devices and services’ usability.

OnlineResources class saves the details information which relates to online

resources that users have. The most important part is hasOnlineAccount

used by any online service to identify oneself from another (e.g. IM,

MSN, eBay, bank account etc.). hasOnlineRes property also connects to

services’usability.

PhysicalResources class stores the information about hardware of the user

has such as internet bandwidth, computer CPU and so on. This in-

formation is related to the restrictions of service’s speed and hardware

requirements for using the service.

FinancialResources includes the information of the financial restrictions on

both cost and payment methods.

involveActivity property describes what activity is involved in using these

resources.

3.1. User Context Modelling 55

Figure 3.4: Activity package UML diagram

3.1.3 Activity context

Activity context (Figure 3.4) describes everything a person is doing (assigned

tasks) in order to fulfil a goal. Each activity has a goal, a location and a

person.

Goal class uses keywords (ontology based) to describe the performing task

and its effects. This property implies the functional requirements of the

service.

hasLocation states the location information to perform this activity which

links to the location or distance constraints of selecting the service. This

information stores in Physical environment context package.

Calendar class stores the schedule of the activity, which includes start time

and end time.

Status class property can change the important level of different NFPs. For

instance, emergency situation requires different set of important weights

for the service non-functional properties from normal situation.

3.1. User Context Modelling 56

Figure 3.5: Physical environment package UML diagram

involveIn property links to people who are involved in this activity. Conse-

quently, the context of involved people will be retrieved for the particular

activity which requires service(s).

requireResources property stores the resources are needed for completing

the activity. Resource information is stored in Resource package.

3.1.4 Physical environment context

Figure 3.5 shows the Physical Environment Package UML diagram. The phys-

ical environment context is the detail ontology of Location property. It utilises

more precise indication of the location and time related constraints.

Address class is an abstract concept expressing fixed location. A fixed lo-

cation may have different representations such as GPS Coordinate or

3.2. Service Data 57

postal address. Class Coordinate describes real time position of a per-

son/resource with a latitude longitude pair. hasPostalAddress covers

country, city, street, building number and postcode, it is usually used for

a fixed outdoor location of a working place. hasHomeAddress is similar

to hasPostalAddress but for home address.

FixedLocation class is any location that does not move its position. It is

usually defined by PostalAddress, a physical address or Coordinate, an

exact spot (GPS) on the planet. RelocateAt property is used to specify

movements of an entity. However, its current precise position can still be

shown with hasCoordinate property. onTravel property specifies that the

user is travelling at the moment. Therefore, there is no precise position

information available but with the information of the destination of the

travel.

Physical environment package also connects to other packages such as Activity

and Profile Package.

3.2 Service Data

3.2.1 Service repository and category

The service repository contains different kinds of categories (see Figure 3.6)

which classify services by their functional properties (e.g. notification service,

flight booking service and medical support service). Service functional proper-

ties are described by the ontology-based key words and IOPE (Input, Output,

Preconditions and Effects) specifications (this only related to service discovery

step which is not the issue we are addressing in this dissertation). The formal

definition of category is as follows:

3.2. Service Data 58

Figure 3.6: Service repository

Definition 3.1 A category is a tuple < Name, Id, KeyWords, Description,

MetaDataSet, InputType, OutputType, Preconditions, Effects>.

Name is the syntactic name of the category.

Id is the unique identifier of the category.

Keywords are the ontology-based selection of words which describe the func-

tional properties of the category.

Description is a name detailed explanation of the category in order to service

providers to decide which category is appropriate for their services.

MetaDataSet is a set of meta data (non-functional properties) definitions.

A MetaDataSet may include more than one definitions and they are different

for different category domains.

InputType presents the input parameters requirement.

OutputType presents the output parameters requirement.

3.2. Service Data 59

Figure 3.7: Relations between category concept and OWL-S profile ontology

Figure 3.8: The conceptual model of MetaData

Preconditions present the required conditions for invoke the service.

Effects present the post-conditions after service was successfully invoked.

Figure 3.7 shows the mapping between Category concept and OWL-S service

profile ontology.

3.2.2 Meta data of category

As we defined in Definition 3.1, a MetaDataSet in the category is a set of

meta data which describes considered NFPs of the service. Each meta data is

formally defined as Definition 3.2 (also see Figure 3.8)

Definition 3.2 Meta data is a tuple of the form < Name, Id, Description,

AbstractType, WeightSet, ServiceQuery >.

3.2. Service Data 60

Name is the syntactic name of the meta data item.

Id is the unique identifier of the meta data item.

Description is a detailed explanation of the meta data which introduces the

way to specify this meta data inside a service OWL file (e.g., unit and data

formation of a meta data).

AbstractType is the high level evaluation type to identify the adequate eval-

uation method (this is discussed in more details in Chapter 5). At this mo-

ment, it can be seen simply as a link syntax between meta data and its type

of evaluation function.

WeightSet is the importance level of this meta data item in a particular cat-

egory domain. Different situations imply different importance considerations

of the meta data. So the weight are composed of EmergencyWeight, Default-

Weight and CustomWeight. In order to specify the situation that the minimum

value is the best evaluation respect, we use negative values of (-1,0) to define

the importance semantics of the meta. Otherwise we use (0,1) value. (The

formal semantics of the weight values are defined in Chapter 5.)

ServiceQuery is a SPARQL (SPARQL Protocol and RDF Query Language)

query statement [PS06] which can be used to locate the meta information from

a published service description.

In order to clarify meta data should be specified, the NFPs are discussed more

deeply here.

3.2.3 Service NFPs

The functional properties are normally described as IOPE specifications. The

functional properties mainly specify the requirements of service invocation and

promised deliveries from successful service execution. In contrast to functional

3.2. Service Data 61

properties, NFPs refer to the attributes which describe the QoS (Quality of

Service, e.g. security and speed) and other meta data about the service (e.g.

provider, invoke policy and prices).

[Tom07] separated NFPs as annotation attributes and non-functional behavioural

attributes. The annotations attributes are the properties which can apply to

all element descriptions, e.g. services, goals, mediators, ontology. They simply

provide a way to annotate and to provide meta data about any type of element

description.

[LNZ04] distinguished NFPs by generic quality criteria and domain specific

criteria. The generic criteria are applicable to all services, e.g. price and exe-

cution duration. The domain specific criteria refer to the different concerning

aspects of the services from different service selection domains. For example,

the printing service may concern NFPs of speed, colour options and quality.

However, the weather service may consider accuracy and range. By summa-

rizing previous NFPs definitions, we divide NFPs into following seven groups.

General properties are provided by service providers to describe the provider’s

information such as name of the provider, the location and price of the

service and other provider related properties.

Trust properties are provided by the third parties who can monitor the

services behaviours and give the feedback about the services, e.g. repu-

tation, trust and satisfaction of the service.

Usability properties may have the elements of availability, policy, commu-

nication protocol and domain specific elements. Availability indicates

whether the service is alive or not. Policy tells who, where the service

can be used or not be used. For example, the service does not support

invocation from mobile-application. Communication protocol explains

3.2. Service Data 62

Figure 3.9: OWL-S: service profile ontology

how the services communicate with the surrounding environment, such

as SOAP or REST (Representational state transfer).

Reliability properties may have the error rates and stability. Error rates

shows chances of getting unsuccessful results from a service. The stability

represents the long term stable performance of a service.

Efficiency properties may have the execution duration, accessibility and

accuracy. The execution duration describes the speed of the service for

completing a successful task. The accessibility shows the states of be-

ing accessible or not (e.g. the service is not accessible from wireless).

The accuracy indicates the correctness and freshness level of the data or

information produced by a service.

Security properties may include the privacy and security status. Privacy

explains how a service protects its end-user’s information. Security status

3.2. Service Data 63

tell the level or standards of the service security.

Domain specific properties define the extra considerations for some spe-

cific types of services. For example, printer service may have colouring

option as the extra NFPs, but weather service will not have.

In order to express NFPs syntax within OWL-S, we extended the OWL-S pro-

file ontology by adding NFP class and hasNFPs property between servicePa-

rameter and NFP classes. The extended service profile ontology is visualised

as Figure 3.9. Code 3.1 is a fragment of NFPs specified in the OWL-S profile

and a complete OWL-S profile example shows in Appendix A.

<profile:Profile>

...

<profile:hasParameter rdf:resource="#parameter"/>

<Parameter rdf:ID="parameter">

<hasParameterName rdf:datatype="&xsd;string">NFPParameter</hasParameterName>

<hasNFP rdf:resource="#typeOfMessage"/>

<hasNFP rdf:resource="#price"/>

...

</Parameter>

<NFP rdf:ID="price">

<hasNFPName rdf:datatype="&xsd;string">serviceFee</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">numerical</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">0.5</hasNFPValue>

</NFP>

<NFP rdf:ID="typeOfMessage">

<hasNFPName rdf:datatype="&xsd;string">messageType</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">stringSet</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">IM</hasNFPValue>

</NFP>

...

</profile:Profile>

Code 3.1

3.2. Service Data 64

If we query the value of “typeOfMessage” NFP of the service, the SPARQL

query should be stated as Code 3.2.

Namespace...

SELECT ?value

WHERE {:typeOfMessage :hasNFPValue ?value}

Code 3.2

3.2.4 Service register

According the specifications of category and meta data, the service provider

can register a service into a category. A service is defined as Definition 3.3.

Definition 3.3 A service is a tuple of < Name, Id, Provider, OWLURL,

WSDLURL >.

Name is the syntactic name of the service.

Id is the unique identifier of the service.

Provider is the service provider information.

OWLURL is a URL link of the location of the OWL-S description file. The

OWL-S file should include the required NFPs meta information about the

service.

WSDLURL is a URL link of the invoke endpoint of the service.

Registering a service requires 3 steps:

3.3. Context-aware Criteria Generation Process 65

Figure 3.10: Service registration

1. Selecting category, a service provider should go through the service repos-

itory to search a service category that is the most suitable one for his

service according to the category description and key words.

2. Describing the NFPs defined in the selected category inside the service

OWL-S file.

3. The provider deploys the service information into the service repository

with name of the selected category.

Figure 3.10 represents the service models before and after registration.

3.3 Context-aware Criteria Generation Process

At this stage, on the one hand, we defined user context information which

related to the service selection. On the other hand, services’s NFPs have

been registered as meta information in the service category. To link the two

sides for context-aware service selection goal, we use context-aware criteria

concept which is the bridge between user context and service NFPs. Service

3.3. Context-aware Criteria Generation Process 66

selection method ranks the competitive services according to these context-

aware criteria. The criteria generation should have two main characteristics:

1. Context-awareness ensures correct criteria to be generated according to

different user scenarios. For example, the location criterion should be

generated differently and timely when user’s location is changing. An-

other context-aware scenario is when a user asks a medical support ser-

vice to help a minor injured person, the location criterion is more im-

portant than the support level criterion because all the service can deal

with the minor injury situation. However, if it is a emergency case, the

support service is more important than location since only high level

support service can handle this emergency situation.suitable

2. Automation facilitates the service selection process to support automati-

cally service evaluation. To achieve this aim, the evaluation criteria have

to be generated dynamically without human interactions.

To meet these two requirements, a dynamic service selection criteria generation

process is developed. The basic idea of criteria generation is that the service

selection criteria are initialized from the category meta requirements at service

selection time and the constrained values of each criterion are modified by

the runtime user’s context information (and composition context information

for composition scenarios which will be discussed in Chapter 5). In order

to illustrate the details of the generation process, the criterion and SPARQL

matching table need to be discussed first.

Definition 3.4 A criterion includes < Name, Id, AbstractType, Value, Weight-

Set ContextQuery, ServiceQuery >.

Name is the understandable syntax of the criterion.

3.3. Context-aware Criteria Generation Process 67

Id is the unique identification of the criterion.

AbstractType is the high level evaluation type mode to match the adequate

evaluation methods to this criterion. This concept is as same as the one defined

in Definition 3.2 (more discussion is in Chapter 5) and it is automatically

generated from meta information in the category.

Value is the constraint value of the criterion.

For instance, “Leicester” is the location of the current user. Therefore, the

desired service should be available and workable in this area. Actually, the

value of this element is gained automatically from the user’s context. This

factor shows one aspect of context-awareness.

WeightSet is the importance level of the criterion and it is as same as Weight-

Set defined in Definition 3.2.

ServiceQuery is a SPARQL query statement which can be used to locate

this meta information from published service description.

ContextQuery is similar to ServiceQuery, it stores the query statement to

get the correct related context data as the criterion value.

We also need a SPARQL query matching table to indicate which ContextQuery

statement is used for querying user runtime context information that is related

to the criterion. Furthermore, SPARQL reasoning rules are also required to

work together with ContextQuery in order to gain more correct and accurate

user context value. For example, Code 3.3 shows the ContextQuery (SPARQL

query statement) for obtaining user’s current available devices.

Namespace...

SELECT ?devices

3.3. Context-aware Criteria Generation Process 68

ServiceQuery ContextQuery rule
ServiceQuery1 ContextQuery3 rule13
ServiceQuery2 empty empty
ServiceQuery3 ContextQuery9 rule3, rule5

...

Table 3.2: SPARQL query matching table

WHERE {:Resource :hasElectricRes ?er.

er:hasDevices ?devices}

Code 3.3

However, we are not going to details of how the context reasoning rules apply

to the context query in this dissertation. Here, we have three query/rule pools

for storing ServiceQuery, ContextQuery and Reasoning rules respectively. It

allows an empty query and rule to be existed. Empty ContextQuery means

that the runtime criterion constrained value is going to be empty for evaluation.

Without value, the evaluation function will give the highest score 1 to the

service that has the best value for the criterion, 0 score to the service that

has the worse value and score Currentservicevalue
Bestservicevalue−Worstservicevalue

for other services

in the between (more details about criteria evaluation and aggregation are

introduced in Chapter 4). The SPARQL query matching table shows in Table

3.2.

The whole generation criterion process includes 5 steps which are represented

in Figure 3.11.

1. Initialise all the criteria from matched service category MetaDataSet.

2. Search the SPARQL matching table to obtain the ContextQuery state-

ments to each criterion.

3.3. Context-aware Criteria Generation Process 69

Figure 3.11: Criteria generation process

3. Using the matched contextQuery statement to retrieve the runtime user

context information which related to the criterion. The value of the crite-

rion is modified by using the ContextQuery string (it is a SPARQL query

statement) to invoke the Jena context query engine for getting the cor-

rect and runtime constrain value from user context data.The weight set

is selected by automatically searching what activity status are currently

for requesting the service. If the statu is emergency, then the emergency

weight set is used. Otherwise, the default weight set is selected. In sin-

gle service selection scenarios, the custom weight set is selected when the

weights are defined by users..

4. Assign the retrieved runtime context values and data to the values and

WeightSet defined in each criterion.

5. Group all criteria into a runtime criteria set for service selection method

to use.

Until now, the user context-aware issue is solved by applying this automatic

context-aware criteria generation process.

3.4. Criteria Generation Example 70

3.4 Criteria Generation Example

To make the process of automatically generating the context-aware criteria

more understandable, we take the previously discussed notification service se-

lection scenario (see section 1.1.2) as an example in this section.

From service meta data aspect, the notification service category may consider

the following NFPs.

• Covered location: the areas which can be covered by the notification

service.

• Type of message/devices : the notification service may send SMS, IM,

e-mail which may also be received by mobile phone, computer or PDA.

• Price: different notification service may have different costs.

• Response time: notification services require some time to respond for

the service invocation. The response time may be affected by type of

messages, network ability and other human or unhuman factors.

• Prefer contact method : user may consider what type of message she/he

would like to receive.

• Privacy : the levels of the privacy are protected by the notification ser-

vice.

The weights for different non-functional meta data are firstly defined by ser-

vice domain experts as default, such as 1 for Covered location and Type of

message, -0.3 for Price, 0.3 for Prefer way, -0.9 for response time and 0.5 for

Privacy. Here, 1 means the non-function properties must be satisfied as hard

requirements. The bigger absolute weight value means the criteria is more

important. The weight of (-1,0) means the smaller meta data is desired. The

3.4. Criteria Generation Example 71

weight of (0,1) means the bigger meta data is desired. The detailed meaning

of values from -1 to 1 will be explained in Chapter 4. However, the default

weights setting can be redefined for emergency situation as emergencyWeight

set. The emergencyWeight set should be designed by both domain experts and

service client users learning from the emergency experiences. Moreover, the

users can always set the customWeight for their special context requirements.

From user context side, the participate may has following context data recalling

the scenarios in Chapter 1:

1. Bob is on holiday with only his mobile phone and PDA. The holiday

location is in Spain. On holidays, Bob prefers to be contacted by PDA

rather than mobile phone message.

2. Alice has switched off her mobile phone to conserve battery power, but

she is online using IM (IM is also her preferred method of contact).

3. John is working in his UK office with access to a wide variety of com-

munication devices (mobile phone, email, IM and PDA). However, he

prefers to be contacted by email message.

From the user context, we can find the above three context constraints matched

to three category meta considerations of Covered location, Type of message/devices

and Prefer way. However, the non-mentioned three types of meta are hidden

implied as high as possible for Privacy and as low as possible for price and

response time. These hidden constraints do not specify the instant data values

for generating the criteria.

Based on the category meta specification and user context information, the

notification service selection criteria generated for Bob in normal situation is

shown in Figure 3.12.

3.5. Summary 72

Figure 3.12: The context-aware selection criteria for Bob

3.5 Summary

In this chapter, we illustrated the first contribution of the thesis: using context

information together with service non-functional meta data to automatically

generate the service selection criteria. Because the generated criteria reflect the

user context information, we call them context-aware criteria. The Context-

aware criteria are going to affect the further service selection steps.

Refer to the proposed overall service selection process, we discussed three com-

ponents as shown in Figure 3.13.

First, user context are modelled including four aspects: user profile, resources,

activities and physical environment. We explained the relations between the

context model and the service NFPs.

Secondly, we introduced a new service repository system to allow separating

services into different kinds of categories which are not only based on the func-

tional properties but also non-functional meta data considerations. Specially

3.5. Summary 73

Figure 3.13: Components are discussed in Chapter 3

we explained the way to extend existing OWL-S profile ontology by adding

NFP class associates to ServiceParameter class.

Finally, based on the context model and the new category system, the service

selection criteria are automatically generated to reflect the user context by

applying SPARQL query technology.

The context-aware service selection criteria are the first and key step to achieve

runtime user context-aware automated service selection. The methodology ap-

plying these criteria for service selection will be discussed in the next chapter.

Chapter 4

Service Selection Method

We aimed to address the three challenges of context-awareness, automatic ser-

vice selection and service composition and introduced the solution to the first

in the previous chapter by dynamically generating the context-aware service

selection criteria which will be used for service selection. As discussed in Chap-

ter 2, there are 6 crucial requirements for developing a suitable and reliable

service selection method, besides context-awareness. Our earlier survey con-

cluded that the currently existing service selection methods are not capable to

deal with at least 3 requirements: (1) combining criteria evaluation functions

into the selection method, (2) dynamic selection of aggregation functions and

(3) the automation of both the evaluating and aggregation processes. However,

these 3 requirements are very important in order to achieve the context-aware

service selection aim.

In this chapter, we will concentrate on addressing these 3 issues. The remainder

of the chapter is organised as follows.

Section 4.1 illustrates the overview of the proposed service selection method.

Section 4.2 explains the details of the proposal type-based criteria evaluation

function. Section 4.3 discusses the LSP (Logic Scoring Preference) aggregation

74

4.1. Service Selection Method Overview 75

function and our extension to it. A worked example in Section 4.4 makes the

results more concrete and finally we draw a conclusion in Section 4.5.

Parts of this chapter have been published in [YRM08a] and [RMYT09].

4.1 Service Selection Method Overview

There are two foundations of our proposed TLE (Type-based Logic Scoring

Preference Extension) service selection method. One is the type-based crite-

ria evaluation function. The other is an extended LSP aggregation function.

These two foundations will be fully explained in section 4.2 and 4.3. In this

section, the overview of the selection method and the selection process will be

presented. There are three functions involved in the selection method.

Type-based criteria evaluation function. This component is designated

to dynamically evaluate the different criteria. The inputs of the evalu-

ation function are the context-aware service selection criteria and a list

of functionally competitive services with their meta URL. The outputs

are the evaluation scores for different criteria and services. The func-

tion has two features. First, it automatically matches the evaluation

methods to the criteria based on their abstract types. Second, it can

query all services related meta data and evaluate them according to the

context-aware criteria.

Orness degree calculation function. This is used to automatically decide

which aggregation function should be applied to the selection function

based on the criteria preferences and criteria evaluation results. The

orness degree presents the degree position between simultaneity and re-

placeability.

4.2. Type-based Criteria Evaluation Function 76

LSP extended aggregation function. This is applied to aggregate differ-

ent criteria evaluation scores of a service into a single overall score. As

a result, all services have their own aggregated single evaluation score

based on the same set of context-aware criteria. The aggregation uses

the appropriate function as obtained by the orness degree calculation

function.

4.2 Type-based Criteria Evaluation Function

Automatically evaluating different criteria is one of the challenges in a service

selection method. Most of the traditional criteria evaluation functions strongly

rely on human intervention. For example, criteria used for selection are tightly

bound to a predefined evaluation function. In particular, the criteria have var-

ious types discussed when we introduced the abstract type in Chapter 3. The

context-aware environment requires different evaluation functions to fit into

their data types. Using static mapping techniques, when a new criterion is

added into the evaluation environment, a new evaluation function or mapping

needs to be manually predefined as well. Meanwhile, changing criteria require-

ments might also need manual modification of details of the mapped evaluation

function. In a context-aware environment, however, context changes frequently

and unpredictably. Therefore, automatic criteria evaluation becomes a crucial

need in the service selection method.

Keeping different types and automatic function mapping in mind, we develop a

type-based criteria evaluation function. This function can automatically match

the evaluation methods to the criteria by detecting their abstract types rather

than having to identify an evaluation function for each individual criterion.

By analysing the motivating scenarios in Chapter 1, we define four abstract

types of criteria and each type has a related evaluation function.

4.2. Type-based Criteria Evaluation Function 77

1. The numerical type is used for criteria which take numerical input to

the evaluation method such as cost, time and measurement values. The

mapped evaluation method is given by equation 4.1, where w is the

weight of the criterion. When the criterion is of numerical type, the

weight can be in the range [-1, 0) or (0, 1]. [-1, 0) means that a smaller

numerical value is desired (as e.g. for price properties). v is the value for

the service under evaluation, vmax is the maximum value of all competi-

tive services for the criterion. vmin is the minimum value of all compet-

itive services (if no constraint is specified, it means the lowest value is

preferable) or the constraint value of the requirement from the context

information.

ε =

1−(vmax−v)
vmax−vmin

iff w ≥ 0,

1 iff w 6= 1and vmax = vmin

0 iff w = 1and vmax = vmin

vmax−v
vmax−vmin

otherwise.

(4.1)

2. The boolean type is used for criteria which have a certain value evaluated

as 1 or 0. The boolean type normally implies an exact match require-

ment, e.g. the yes/no criteria. It also can be single string and numerical

match. The evaluation function is:

ε =

1 iff criterion is met,

0 otherwise.

(4.2)

3. The string set matching type is used to define the criteria which are

measured by the size of the evaluation objects’ satisfaction subset. For

example, a person has Visa, Master and Solo cards (this is a value set)

and a service supports payment by Visa card only, then the set match

4.2. Type-based Criteria Evaluation Function 78

level is 1
3
. If the set only contains one value, then the evaluation function

becomes essentially identical to the boolean type.

ε =
ε1 + ε2 + ... + εi + ... + εn

n
(4.3)

where εi is a score for each element of the set.

4. The distance type is defined to calculate the distance of two geographic

coordinates:

ε =

R× c iff c ≥ 1

R× 2× arcsin(1) otherwise.

(4.4)

c = 2× arcsin k

k =
√

sin 2(| L2− L1 | /2) + cos(L1)× cos(L2)× sin2(| G2−G1 | /2)

with L1 and L2 being latitude and longitude of the first point, L1 and

L2 being latitude and longitude of the second point and R being the

Earth mean radius of 6371 km.

We do expect there will be more types which need to be defined for different

evaluation contexts and environment. However, these four types proved suffi-

cient for our case studies discussed in Chapter 1. If further types are added,

then this should not affect the feasibility achieved by our selection method, as

each criterion has a specific type and has a related evaluation function.

4.3. LSP-based Aggregation Function 79

4.3 LSP-based Aggregation Function

4.3.1 LSP function in literature

LSP (Logic Scoring Preference) aggregation function introduced in [Duj75] is

one professional evaluation method initially designed for solving hardware se-

lection problems [Duj]. LSP extends the traditional scoring techniques [III70]

by adding continues logic to the aggregation function. The traditional scoring

techniques captured by equations 4.5 through to 4.9 represent the totally dif-

ferent aggregation requirements, where Wi is the weight and Ei is individual

criterion evaluation result.

E =
n∨

i=1

WiEi (4.5)

Equation 4.5 represents the full disjunction aggregation function which means

that the final aggregating score is the highest evaluation result of the criteria.

For example, E = 0.3 ·0.4∨0.2 ·0.8∨0.5 ·0.3 = 0.16. This function implies the

highest score can replace the lowest score. Thus, full disjunction aggregation

operates full replaceability.

E =
n∧

i=1

WiEi (4.6)

Equation 4.6 is the opposite function of full conjunction, which does not allow

higher scores to affect the final aggregation result. For example, E = 0.3 ·

0.4 ∧ 0.2 · 0.8 ∧ 0.5 · 0.3 = 0.12. However, these two aggregation functions

are two extremes useful for some evaluation tasks. For example, one person

may consider price and performance as criteria to select the car. If the price

is evaluated as full satisfaction, then the ranking result will be 1 without

considering the other performance criterion by using equation 4.5. On the

4.3. LSP-based Aggregation Function 80

other hand, if the price is not satisfaction at all, then the ranking result will

be 0 without considering the performance criterion by using equation 4.6.

To fill the middle ground between the extremes of full disjunction and full con-

junction, we can consider weaker disjunction, average aggregation and weaker

conjunction function represented in equation 4.7, 4.8 and 4.9. In fact, these

aggregation functions represent the fine-tuned logic relations between different

evaluation criteria. Normally, these logic relations can be decided upon by

human based analysis according to the evaluation requirements. For example,

one person may consider both safety and performance criteria as important

for buying a car. Therefore, the aggregation function should show a more con-

junctive meaning rather than disjunctive meaning. In other words, the person

does not like the high safety score to hide the low performance factor. In real

world evaluation scenarios, there are more complex situations which require

more than 3 aggregations between disjunction and conjunction.

E =
n∑

i=1

WiE
2
i (4.7)

E =
n∑

i=1

WiEi (4.8)

E =
n∏

i=1

WiEi (4.9)

E = (
n∑

i=1

WiE
r
i)

1
r (4.10)

Equation 4.10 captures the initial idea of LSP method manually to amend

the usages of the aggregation method by only modifying a single parameter r,

where
∑n

1=i Wi = 1 and
∑n

1=i Ei = 1. The selection values of r are defined

4.3. LSP-based Aggregation Function 81

Figure 4.1: GCD mean operators [Duj]

as GCD (Generalized Conjunction-Disjunction) function in Continuous Pref-

erence Logic [Duj07]. The currently defined 20 GCD operators with accepted

symbols, disjunction degrees and parameter for r values (numbers of criteria

range from 2 to 5) are presented in Figure 4.1 and more detail and large num-

ber of criteria mapping calculation from disjunction degree to r can be found

in [Duj]. For example, the r value can be calculated by equation 4.11 for 2 cri-

teria (or simply obtained from the table). In Figure 4.1 “QD” stands for quasi

disjunction and “QC” stands for quasi conjunction. “d” shows the degree level

between disjunction and conjunction. Each degree level has a set of matched

r values according to different numbers of criteria. Disjunction degree level is

also called Orness degree.

r =
−0.742 + 3.363d− 4.729d2 + 3.937d3

(1− d)d
(4.11)

In short, LSP aims to evaluate quantitative features for the comparison of

different entities. Recently, LSP has been used to deal with selecting Data

Management systems, Hardware/Software systems and web sites evaluation

4.3. LSP-based Aggregation Function 82

[Duj, SDB+87, OR02]. The research results show the selection problems are

solved satisfactorily. However, there are three difficulties with adopting the

initial LSP aggregation function into dynamic and automatic context-aware

evaluation environment.

1. There is no automatic method defined to calculate the power r. Cur-

rently, the r value is defined based on manual Orness degree analysis by

domain experts. This is clearly not suitable for dynamic context-aware

evaluation requirements.

2. It is very difficult to give the semantics to the value of weights by having

constraint of
∑n

i=0 Wi = 1 which limits the freedom to express the real

important considerations for different criteria. For example, if there are

two equal important criteria and one less desired criteria say 0.1, then we

have to share the value of 1-0.1 to assign 0.45 to each of the important

criteria. In this case, 0.45 means the most important. However, people

may want to use 0.9 to express how the criteria are important for them

rather than 0.45. Without weight semantics, it is impossible to argue

the reason why give the criterion 0.6 weight but not 0.4 or 0.5. This

problem is not only in the LSP function, but also in all of the existing

aggregation functions.

3. The original LSP method does not clearly distinguish hard criteria(cri-

teria that must be satisfied) and soft criteria (criteria that are desired to

be satisfied). It only separates them by the value of weights. However,

as we discussed on the above, without semantics for weights it is difficult

to automatically recognise the hard criteria.

To overcome these limitations, we extend the LSP function in three aspects:

(1)defining weight semantics, (2)separating hard criteria from soft criteria and

(3)automatically computing the Orness degree.

4.3. LSP-based Aggregation Function 83

Weight Importance Level
| Wi |= 1 hard criterion
0.9 ≤| Wi |< 1 highest importance criterion
0.8 ≤| Wi |< 0.9 higher importance criterion
0.7 ≤| Wi |< 0.8 priori importance criterion
0.6 ≤| Wi |< 0.7 normal importance criterion
0.5 ≤| Wi |< 0.6 lower importance criterion
0.4 ≤| Wi |< 0.5 high desire criterion
0.3 ≤| Wi |< 0.4 higher desire criterion
0.2 ≤| Wi |< 0.3 low desire criterion
0.1 ≤| Wi |< 0.2 lower desire criterion

Table 4.1: Weight semantics

4.3.2 Defining weight semantics

Defining the semantics of the weights is crucial to allow users (e.g. category

definers and service requesters) to understand (1) each value of the weight

representing the defined importance level and (2) the semantics of human

reasoning due to a shared understanding of the weight definition. In order to

give the correct semantics, two extension having been applied.

1. The sum of weight value does not need to equal 1. As discussed
∑n

i=0 Wi =

1 limits the freedom of defining the semantics to the weights. Meanwhile,

enabling to continue correctly using the LSP method, the 0 <| Wi |< 1

must be satisfied. Hence the values have to be normalised, which can

be achieved automatically by applying W ′
i = Wi∑n

i=0|Wi| , where Wi is the

defined weight by users with semantics. W ′
i is the weight which will be

used in the LSP aggregation function, where
∑n

i=0 W ′
i = 1.

2. A semantics for weights has been defined to match the weights to the

different importance levels, see Table 4.1.

4.3. LSP-based Aggregation Function 84

4.3.3 Separating hard criteria and soft criteria

We separate criteria by defining all the hard criteria’s weights as 1 or -1 and

soft criteria’s weights value from (-1, 0) or (0, 1). This modification can be

seen as a further extensions of the weight semantics. Based on the separa-

tion, a particular conjunctive partial absorption function has been defined in

Figure 4.2, where Ch
i and Cs

j represent the hard criteria and the soft criteria

respectively. The first aggregation function (denoted with DAC symbol in the

Figure 4.2) uses the automatically calculated r value from the orness degree

calculation algorithm (see Section 4.3.4) and the respective formula is shown

in equation 4.12.

E = (
n∑

i=1

| W ′
i | Er

i)
1
r (4.12)

The second aggregation function denoted (with CA symbol in the Figure) uses

the CA GCD operator which has been introduced in the original conjunction

partial absorption function in [Duj] to aggregate scores for hard criteria with

the overall soft criteria score. HEi is the “Hard Criteria Evaluation result”

and SE is the “Soft Criteria Aggregation Evaluation result”. Behaviors of the

conjunctive partial absorption function are such that the global selection value

of a service (denoted by GP) is an error when any of the hard criteria are not

satisfied, in which case the service is discarded. On the other hand, a service

that satisfies all hard criteria will be evaluated to a non-zero value, from which

the degree of satisfaction of the soft criteria can raise or reduce the final global

aggregation selection results. In another words, hard criteria can be seen as

same as soft criteria when the service satisfies all the hard criteria. Therefore,

in equation 4.13, the hard criteria and soft criteria are equally weighted (0.5)

for the final aggregation step.

4.3. LSP-based Aggregation Function 85

Figure 4.2: The conjunctive partial absorption function

E = ((
n∑

i=1

(| W h
i |)/i2)HEr

i)) + 0.5SEr)
1
r (4.13)

4.3.4 Automatic calculation of Orness degree

The last extension to the initial LSP function is the automatic Orness de-

gree calculation function. The calculation function derives from equation 4.14,

which was proposed by Fodor and Marichal independently to measure the or-

ness of any mean operator M(x) by studying the LSP degrees of conjunction

and disjunction [FR94, Mar98], where Max(x) is the pure conjunction (C)

and Min(x) is the pure disjunction (D). However, this definition bases on the

definition of function M(x).

ornessD(M(x)) =

∫
[0,1]n

M(x)dx−
∫

[0,1]n
Min(x)dx∫

[0,1]n
Max(x)dx−

∫
[0,1]n

Min(x)dx
(4.14)

Meanwhile, Yager [Yag88] introduced an aggregation technique based on the

Ordered Weighted Averaging (OWA) operators as defined in Definition 4.1.

Definition 4.1 OWA operator

Let W = (ω1, ω2, ...ωn) with
∑n

i=1 ωi = 1

4.3. LSP-based Aggregation Function 86

Let A = (a1, a2, ..., an) and B = (b1 + b2 + ... + bn) be sets where bi is the i-th

largest element of A.

An OWA operator of dimension n is a mapping

F : Rn → R

such that

F (a1, a2, ..., an) =
∑n

i=1 ωibi

For example, ω = (0.4, 0.3, 0.2, 0.1), then F (0.7, 1, 0.3, 0.6) = (0.4)(1)+(0.3)(0.7)+

(0.2)(0.6) + (0.1)(0.3) = 0.76.

A fundamental aspect of this operator is the re-ordering step. An aggregate ai

is not associated with a particular weight wi but rather a weight is associated

with a particular ordered position of the aggregate [CF97]. In [Yag88], the

Orness measure of any kind of OWA operator is defined as follows:

orness(OWA) =
1

n− 1

n∑
j=1

((n− j)wj) (4.15)

Theorem 4.1 has been proved in [SM03]. It gives a tool for linking the LSP

method and OWA operators by bridging the gap between the Orness definition

of equation 4.14 and the contributions of equation 4.15.

Theorem 4.1 If the problem can be expressed as OWA problem, then:

OrnessD(M(x)) = Orness(OWA)

On the one hand, we argued that the original LSP method does not provide an

automatic mechanism to select a suitable r. On the other hand, [SM03] proves

that if the selection problem can be transformed into OWA operators, then we

4.3. LSP-based Aggregation Function 87

can use the OWA Orness definition to automatically calculate the LSP Orness

degree. Therefore, we need to investigate whether the selection problem can

be transformed into an OWA problem.

In general an OWA problem is characterised by being expressible by two sets:

one with weights and the one with evaluation values. The latter comes in two

forms: A and B, where A is ordered in the same order as the weights and

B is in order of the value of the elements. Considering the services selection

problem, we naturally have a set of weights, but we have multiple sets of values

because we have one set of criteria evaluation values per service. Therefore,

we can compute a set of values that contains the average score for each criteria

across all services to be evaluated to look for an reasonable overall aggregator

which should differentiate the services.

Assume that we are considering m services and n evaluation criteria. W =

{w1, w2, ...wn} is a set of weights and {v11, v21, ...vn1}...{v1m, v2m, ...vnm} are

the evaluation results of each mapped criteria for the different services, with

each set presenting results for the n criteria of one service.

Then:

V = {
∑m

t=1 v1i

m
,

∑m
t=1 v2i

m
, ...

∑m
t=1 vni

m
} (4.16)

is the set of average evaluation scores for our n numbers of criteria.

Using W and V (and its average version V’) as the respective sets, we have

recast the service selection problem into an OWA problem, and hence can use

equation 4.15 to compute the Orness degree, which in turn provides the value

r to be used in the global aggregation function 4.12 for the CAD operator. We

use two examples seen in table 4.2 and 4.3 to show the computed Orness degree

and provide insight about the operator expected for adequate aggregation.

4.4. Applying TLE method to the Notification Service Selection Scenarios88

Criteria C1 C2 C3
Weight 0.7 0.2 0.1

Service1 evaluation scores 0.3 0.2 0.1
Service2 evaluation scores 0.1 0.7 0.9

Table 4.2: Simultaneity example

Criteria C1 C2 C3
Weight 0.7 0.2 0.1

Service1 evaluation scores 0.9 0.2 0.1
Service2 evaluation scores 0.7 0.7 0.9

Table 4.3: Replaceability example

Recall that when calculating overall scores, we do not want the evaluation

results of less import criteria to outweigh the important ones; we referred to

this as simultaneity earlier on. In Example 1 we can see that both services

have low evaluation values for the most important criterion C1, which means

that to ensure simultaneity we require a conjunction LSP operator. By using

formula 4.16 and 4.15, we calculate the Orness degree as 0.2 which maps to

the strong quasi conjunction operator.

Example 2 shows a typical case of replaceability, where a good matching on

an important criterion makes a service preferable. In the example, we can see

that both services have higher evaluation results for the most import criterion.

Recall that for replaceability we would expect a disjunction operator. Again,

by applying our formula we can compute the Orness degree (this time as 0.75)

and we find that it maps to the medium quasi disjunction operator.

4.4 Applying TLE method to the Notification

Service Selection Scenarios

In this section, we apply the proposed TLE service selection method to the

notification service selection scenarios discussed in Chapter 1.

4.4. Applying TLE method to the Notification Service Selection Scenarios89

Reminder that different notification services are required to be send the meet-

ing notification messages to all participants after a meeting has been scheduled

for an emergency situation. The notification service evaluation criteria are

<Covered location, Message type, Price, Response Time, Privacy, Prefer con-

tact method> with respected emergency weights set for the selection criteria

<1, 1, -0.3, -0.9, 0.5, 0.3> and types of <string set, string set, numerical, nu-

merical, numerical, string set>. Currently there are three different notification

services available (see Table 4.4).

4.4. Applying TLE method to the Notification Service Selection Scenarios90

L
o
ca

ti
on

M
es

sa
ge

T
y
p

e
P

ri
ce

R
es

p
on

se
T

im
e

P
ri

va
cy

P
re

fe
r

C
on

ta
ct

in
g

w
=

1
w

=
1

w
=

-0
.3

w
=

-0
.9

w
=

0.
5

w
=

0.
3

n
ot

if
ic

a
ti

on
se

rv
ic

e1
E

u
ro

p
e

M
ob

il
e

p
h
on

e,
E

m
ai

l
0.

4
(U

K
0.

1)
0.

4
s

0.
6

n
o
|n

o
|y

es
n
ot

if
ic

a
ti

on
se

rv
ic

e2
O

n
ly

U
K

E
m

ai
l,

In
st

an
t

M
es

se
n
ge

r
0.

1
0.

8
s

0.
9

n
o
|y

es
|y

es
n
ot

if
ic

a
ti

on
se

rv
ic

e3
E

u
ro

p
e

P
D

A
,

In
st

an
t

M
es

se
n
ge

r
0.

5(
U

K
0.

1)
0.

6
s

0.
9

y
es
|y

es
|n

o

T
ab

le
4.

4:
S
el

ec
ti

on
cr

it
er

ia
an

d
n
ot

ifi
ca

ti
on

se
rv

ic
e

N
F

P
s

m
et

a
d
at

a

4.4. Applying TLE method to the Notification Service Selection Scenarios91

Location Message Type Price Time Privacy PCM
w=1 w=1 w=-0.3 w=-0.9 w=0.5 w=0.3

S1 1 0.5 0.25 1 0 0
S2 0 0 1 0 1 0
S3 1 0.5 0 0 1 1

Table 4.5: Notification service evaluation results calculated by Type-based
evaluation functions for Bob

The participants may have the following context data as shown in Chapter 1:

1. Bob is on holiday with only his mobile phone and PDA. The holiday

location is in Spain. On holidays, Bob prefers to be contacted by PDA

rather than mobile phone message.

2. Alice has switched off her mobile phone to conserve battery power, but

she is online using IM (IM is also her preferred method of contact).

3. John is working in his UK office with access to a wide variety of com-

munication devices (mobile phone, email, IM and PDA). However, he

prefers to be contacted by email message.

We take Bob as an example to illustrate the service ranking process.

For Bob, we invoke type-based evaluation functions to evaluate the different

services with respect to the service selection criteria. For example, the “mes-

sage type” criterion is string set type and we apply the string set matching

evaluation function. For example for service 1:

Emessagetype = 1(mobilephone)+0(PDA)
2

= 0.5

The other individual criteria can be evaluated by the same process for different

services using respective functions, and the final result is shown in Table 4.5.

Step 1 According to the values of weights, “covered location” and “message

type” are hard criteria, the rest are soft criteria. Based on the OWA

4.4. Applying TLE method to the Notification Service Selection Scenarios92

orness degree calculation function, we obtain the soft criteria aggregation

degree.

• the overall scores for “Price”, “Time”, “Privacy” and “Prefer Con-

tact Method” on 3 services are (0.25 + 1 + 0 = 1.25, 1 + 0 + 0.75 =

1.75, 0 + 1 + 1
3

= 11
3
, 0 + 0 + 1 = 1). Therefore, the criteria are

reordered as new set of criteria C ′ “Time”, “Privacy”, “Price” and

“Prefer Contact Method”.

• we re-scale the weights to enable adding up to 1. The re-scaled

weights for the C ′ are 0.45, 0.25, 0.15 and 0.15.

• we apply the OWA orness calculation function to obtain the orness

degree 3∗0.45+2∗0.25+1∗0.15
3

≈ 0.667.

• we map the degree value to the r value which is used as aggregation

power as DAC operator and the calculated closest r value to the

degree of 0.667 is 3.318 for 4 criteria.

Step 2 Application of the corresponding aggregation function to the soft cri-

teria evaluation results:

Esagg
S1 = (0.15∗0.253.318 + 0.45∗13.318 + 0.25∗03.318 + 0.15∗03.318)1/3.318 ≈

0.787

Esagg
S2 = (0.15∗13.318+0.45∗03.318+0.25∗13.318+0.15∗03.318)1/3.318 ≈ 0.759

Esagg
S3 = (0.15 ∗ 03.318 + 0.45 ∗ 0.53.318 + 0.25 ∗ 13.318 + 0.15 ∗ 13.318)1/3.318 ≈

0.784

Step 3 Aggregation of soft criteria and hard criteria evaluation result by using

the CA GCD operator. Because there are two hard criteria, the weights

for the each hard criteria and aggregated soft criteria evaluation result

are 0.5/2 = 0.25 and 0.5.

Ehagg
S1 = (0.25 ∗ 1−0.732 + 0.25 ∗ 0.5−0.732 + 0.5 ∗ 0.787−0.732)1/−0.732 ≈ 0.728

Ehagg
S2 = (0.25∗0−0.732+0.25∗0−0.732+0.5∗0.759−0.732)1/−0.732 ≈ dev/0 error

4.5. Summary 93

Figure 4.3: Components are discussed in Chapter 4

Ehagg
S3 = (0.25 ∗ 1−0.732 + 0.25 ∗ 0.5−0.732 + 0.5 ∗ 0.784−0.732)1/−0.732 ≈ 0.727

Based on the final aggregation results, we find that S1 is the most suitable

service to be selected for sending the notification message for Bob, following

by S3 with S2 not being suitable as it is not cover the area that Bob is in.

4.5 Summary

In this Chapter we have introduced the Type-based LSP extension (TLE) ser-

vice selection method. Refer to the proposed overall service selection process,

TLE is implemented as service selection engine (it is a Web service) in Figure

4.3.

It has three important parts: (1) Type-based criteria evaluation function;(2)

Extended LSP criteria aggregation function and (3) automatic Orness degree

calculation function.

4.5. Summary 94

The type-based criteria evaluation function solves the issue of identifying suit-

able evaluation functions at runtime. Currently, we defined 4 evaluation func-

tions for numerical, boolean, string set and distance types. For different dy-

namic service selection frameworks, further types may be required, together

with respective evaluation functions.

The extended LSP aggregation function enhances the LSP advantages to deal

with dynamic changing aggregation requirements. The extension adds the se-

mantics to the weight values in order to clearly express the criteria preferences

and their relations.

Finally, we introduced the Orness degree calculation function which uses

weight values. The Orness degree finally is applied to the extended LSP ag-

gregation function for ranking the services.

In terms of context-aware automated service provision, the TLE service selec-

tion method has advantages over existing methods discussed in Chapter 2 with

regarding to automatic evaluation and aggregation in dynamic environments.

Further evaluation of the TLE method will be discussed in Chapter 6.

Chapter 5

Backwards Composition

Context based Service Selection

in Composition Scenarios

In Chapter 4, we introduced the automatic TLE service selection method for

single service selection scenarios. However, for composition scenarios, addi-

tional information is required, we refer to this as composition context. Com-

position context generally refers to information that tells about services’ col-

laboration histories, policies and financial terms. In this chapter, we introduce

composition context and the composition mechanism to use it for service selec-

tion based on the proposed TLE service selection method. The assumptions

in this chapter are that the composition activities are well defined as a work-

flow template and that the context information can be dynamically stored and

retrieved by the selection method. We have briefly discussed two service com-

position scenarios (organising a meeting and planning a trip) in Chapter 1.

In this chapter, we will discuss them in detail, and use them to explain the

Backwards Composition Context based Service Selection (BCCbSS) approach.

In the composition workflow, each activity can be conducted by invoking a

95

5.1. Composition Scenarios 96

type of service. Each type of service may have different services supported by

different providers. Optimally composing different types of services to obtain

the most suitable composite service is a crucial challenge. Meanwhile, the

service composition process can be seen as performing multiple service selection

steps following the workflow structure.

We firstly study the two typical scenarios in more detail to discuss what kind

of information affects the service composition and should be considered as part

of the composition context in Section 5.1. We then make precise what we mean

by composition context in Section 5.2. The composition context based service

composition approach is illustrated in Section 5.3. The research contributions

will be discussed in Section 5.4. A comparison to related work on service

composition will be discussed in Section 5.5. The chapter concludes with an

example and summary in Section 5.6 and 5.7. Some parts of this chapter have

been published in [YRMT08] and [YRM09b].

5.1 Composition Scenarios

Let us further consider the composition scenarios of organising a meeting and

planning a trip which presents real world composition examples. The main

purpose of studying these examples is to understand in more detail what af-

fects service selection in composition and hence how to define and organise

composition context.

5.1.1 Organising a meeting

Recall that a meeting is required to be held for discussing a plan to deal with an

emergency. Organising a meeting needs a series of tasks that can be performed

by services and integrated by a meeting organiser as a workflow template the

5.1. Composition Scenarios 97

Figure 5.1: Workflow of organizing a meeting

same as the one shown in Figure 5.1.

Task 1: Searching for people who are required to attend the meeting; there

are two relevant services offered by two different providers (P1 and P2).

Task 2: Finding a date that most of the invited people are available at accord-

ing to their calendar context data. There are two relevant services offered by

two different providers (P1 and P2) available.

Task 3: Booking a suitable room for the meeting. Again, there are two relevant

services offered by two different providers (P1 and P2).

Task 4. Sending invitation messages including the meeting details. There are

many relevant services offered by different providers which include P1 and P2.

In this scenario, it is further assumed that the target participants are in the

organisation. By analysing this scenario, we conclude some information which

needs to be considered for the service selection and composition.

5.1. Composition Scenarios 98

Local constraints

The meeting organiser invokes the workflow template. For task 1, a people

search service is required and two services are discovered. As discussed in

Chapter 1, local constraints are a set of requirements for the service’s NFPs.

“Local” means the requirements are individual considerations for each type of

the services. These requirements could either be hard criteria or soft criteria

as we defined in Chapter 4. Each requirement has a weight for prioritizing.

For instance, the organiser has preferences stating that accuracy of the search

is more important than speed, only participants within the organisation are

acceptable. If we only consider the local constraints, the selection problem will

be as same as single service selection but with multiple steps for selecting 4

services independently.

Invocation error context

Supposing a service from provider 1 has been selected based on the local con-

straints (e.g. accuracy and speed). Invoking the selected service produces an

invocation error, and hence, the other service from provider 2 has to be used

instead. If this error can be saved as context information and retrieved for

future service composition, it can reduce the composition time and increase

the compositions reliability.

Coordination context

We assume the “people search service” from provider 2 has been selected for

Task 1. For the current Task 2 of date finding, all target participants use online

Google calendars. The only local preference is the availability rate (that is how

many of the targeted people are available for the suggested date). There are

two scheduling services which use people’s calendar’s URL address as input and

return the most suitable date for all involved people as output. One scheduling

service from provider 1 only has the ability to check Google and MSN online

calendar systems and provides a 0.9 availability rate (that is 9 people out of

5.1. Composition Scenarios 99

10 are available on the suggested date). The other service from provider 2 has

the ability to check all kinds of currently existing online calendar systems and

supports a 0.7 availability rate. When only considering the local constraints

on their own, it is easy to see that the service from provider 1 is the better one

because its availability rate is better. However, it is known that the selected

people search service has more coordination failures with the scheduling service

of provider 1 than that offered by provider 2, a fact is learned from historical

composition records available in the context. Taking this into account, it is

more difficult to decide which service is better. The difficulty is to balance local

constraints and global constraints (in this case, coordination constraints). On

the one side, the local constraints ensure that the service satisfies the user’s

preferences. On the other hand, the global constraints can reduce chances of

the composition failure.

Provider distance

We suppose the date finding service from provider 2 has been selected, thus the

previous two tasks are performed by the same provider. For Task 3, the aim

is to book a room with some normal equipment. The booking service takes

date and facility requirements as input and produces the place address and

room information as output. There are two booking services available. One

service supports to book the rooms cheaply but with some normal equipment.

The other service supports to book all available business meeting rooms with a

higher price but with some normal and special meeting equipment. Therefore,

both services satisfy the task requirement. In this situation, a service can be

selected at random as there is no other user’s preference. However, the history

of coordination activities show that services from the same provider have more

efficient coordination rate, then service from provider 2 may be better because

it has provided the previous two services.

5.1. Composition Scenarios 100

5.1.2 Planning a trip

The previous case study shows services selection and composition inside an

organisation. In a more open world, there may be additional economic and

collaboration policy considerations due to business competition. Recall the

scenario of planning a trip requires three tasks of booking transport, purchasing

travel insurance and booking a hotel. Purchasing insurance and booking a

hotel are two independent tasks but they both rely on the transport date and

time.

Allowance policy

We assume that airline service A has been selected for the booking transport

task based on the user local context constraints of covered locations, faster

service response and cheaper service fee. For the hotel booking task, some

business corporation policies are also applicable. It is useful to make selections

depending on the previous selected services’ corporate policy. The following

two are examples.

• It is not allowed to continue invoking the service more than 10 times in

one workflow.

• Provider A does not allow its services to be used by services owned by

provider B.

Cost policy

In the commercial market, cost is an important factor to be considered from

the global point of view. The aim of using the cost policy context is to find

the cheapest composite service, which does not necessarily mean every single

service is the cheapest one because the coordination among different providers

has different prices. This is the main difference between local cost constraint

5.2. Classifications of Composition Context 101

and global cost constraint. For example, one insurance service A takes £10

for travelling with airline service but the airline gives £8 discount for working

with insurance service A. The other insurance service takes £5 for travelling

with the same airline service A. Therefore, the first service is likely selected

from global point of view.

Composition time

Time is also a crucial factor for the business. The time can be considered global

and local. The local view focuses on the individual service response time. In

contrast, the global view concentrates on the overall composite service response

time. For example, one insurance service takes more time to complete with

airline A. However, the other one will take less time to complete with the

same airline. As results, it is more reasonable to select the second one, if we

considering the composition time constraint.

5.2 Classifications of Composition Context

The composition context focuses on the context information which arises from

execution services a part of a composition. Based on the case studies and

scenario analysis, we defined eight composition context constraints in the three

categories: execution context, coordination context and composition policy

context (see Table 5.1). Again, we do not claim the elements defined here

are completed, but they have shown sufficient for our scenarios. Furthermore,

this chapter is about the concept of composition context and it’s usages rather

than about all possibilities of the concept. If further elements are added to the

composition context, they should not affect the feasibility achieved by applying

our selection mechanism. However, they should improve the service selection

quality or accuracy.

Analysing these 3 groups of context, we find that composition context can also

5.2. Classifications of Composition Context 102

Composition
Context

Type Description

Execution
context

Execution error rate Numerical The workflow execution en-
gine detected an exception,
when the server is invoking.

Connection error rate Numerical Two services worked fine in-
dependently, however an er-
ror appeared during their in-
tegration.

Coordination
Context

Provider distance Boolean Do services belong to the
same provider?

Coordination time Numerical The coordination time for
communications between
services.

Physical distance Boolean Are services deployed at the
same physical location?

Composition
policy
context

Special Cost Numerical This captures special deals
between services.

Allowance Boolean This captures which services
can or which cannot be used
together, or “Is composition
allowed?”

Times limitation Numerical This specifies the allowed
times of continuous invok-
ing.

Table 5.1: Composition Context classifications

5.3. BCCbSS: Backwards Composition Context based Service Selection 103

Figure 5.2: Composition complexity analysis

be separated as dynamic context and static context. The dynamic context

(e.g. coordination time) means the context changes very frequently time to

time. Thus, dynamic context needs to be detected, calculated and stored at

runtime e.g. execution context of execution error rate and connecting error

rate. Static context refers to the composition information which does not

change frequently, e.g. provider distance and special cost.

5.3 BCCbSS: Backwards Composition Context

based Service Selection

5.3.1 Challenges of dynamic service selection for com-

position

Our goal is to efficiently conduct the dynamic context-aware service selection

for composition which rises some fundamental challenges over and above the

dynamic service selection discussed in Chapter 4. These occur as we also need

to consider the composition context. The challenges are:

The balance between globally optimal and locally optimal solutions

is an important issue to achieve. Unlike general global optimization

problems, the context-aware service selection requires to consider both

the user’s local context constraints as well as global composition context

5.3. BCCbSS: Backwards Composition Context based Service Selection 104

constraints. Therefore, we need to select the service which satisfies both

sides of the optimization, as otherwise, the selection result may not be

adequate.

The balance between complexity/efficiency and adequacy. Composi-

tion context information is dynamic and has to satisfy multiple con-

straints, making it a difficult global optimization problem. Normally,

global optimization problems have fixed values; for example, when com-

puting cheapest path, each node has a fixed value in the graph, allowing

for the use of greedy algorithms to find the cheapest solution (see Fig-

ure 5.2.a). However, in our case, the service composition context data

is different to different services. For example, the composition price is

£0.5 between Service1 and Service2, but is £0.0 (free) between Service1

and Service3 (see Figure 5.2.b). Additionally, considering the multi-

ple constraint dimensions, the global optimization becomes an NP hard

problem. Therefore, always finding the best possible solution is quite ex-

pensive and time consuming which devalues contributions to the dynamic

context-aware service selection.

Control flow structure affects the global optimal strategy . The other

unusual global optimal issue is that the composition specification is a

workflow with control flow structures such as sequence, parallel (and)

and split (or) operators. Especially, the split control flow has significant

impact on the possible workflow paths, that is only when a service is

selected and invoked, the workflow path can be determined based on the

output data assessment as Figure 5.2.c shows. However, runtime output

data cannot be predicated in advance, and only become known when the

service is invoked. As a result, the global optimization result has poten-

tial to be completely wrong unless split we considered appropriately.

5.3. BCCbSS: Backwards Composition Context based Service Selection 105

The investigations of current service composition approaches (see Section 5.5),

showed that there is no suitable one for these needs. Therefore, we investigate

a new composition approach to achieve our goal.

5.3.2 BCCbSS approach overview

We developed a backwards composition context based service selection algo-

rithm (BCCbSS). Recall that we start with workflow templates and need to

select actual service only, rather than creating the workflow. The approach

starts with the selection of the first activity, with the steps being applied while

more activities are encountered in the workflow. We also treat parallel control

flow and split control flow differently in the algorithm. The parallel tasks are

selected one by one from left to right, however, it will not be considered as

sequence control flow in the algorithm. The split tasks will force to invoke the

service before select service for next task. The detail description is follows.

Step 1 Searching and returning all candidate services from the registry for

the current task in the composition workflow.

Step 2 Invoking the ranking function F (the function will be discussed in

Section 5.3.3) to give an evaluation value to each candidate service by

considering the user context information and composition context be-

tween available services for current task and services selected for the

previous task and next task(Note the previous task or next task means

the previous or next control flow task rather than directly previous or

next task in the real time parallel task). If there is no previous selected

service and no next service (this only happens to the start task), the

ranking function bases the decision on the user context and execution

error rate composition context. If the next workflow operator is “split”,

5.3. BCCbSS: Backwards Composition Context based Service Selection 106

then invoke the highest ranked service for current task and go back to

Step 1. Otherwise directly go to Step 3.

Step 3 based on the highest ranked service for current task, re-rank the ser-

vices for previous task if it exist and has not been invoked, then invoke

the re-ranked highest service for previous task. If an error occurs when

the service is invoked, record the error information in the composition

context store. Repeat Step 3 with the next best service. Otherwise go

to Step 4.

Step 4 If the current task is the last task in the composition workflow, then

invoke the current selected service, log the execution details to the con-

text store and finish. Otherwise, go to step 5 with next required task.

Step 5 Move to next activity and return to Step 1.

The algorithm implementation is represented in Algorithm 1 and 2.

5.3.3 BCCbSS optimization using TLE service selection

method

Service selection based on both the user’s context (local optimal criteria) and

composition context is a vital step of BCCbSS. In Chapter 4, we introduced

the Type-based LSP Extension service selection method to solve the problem

of optimal service selection based on user context.

For adding the composition context into service selection, we define a global

ranking function F as follows:

Let

E1.1 = Soft local optimization criteria considering user requirements and de-

rived from user context;

5.3. BCCbSS: Backwards Composition Context based Service Selection 107

Algorithm 1 BackwardsServiceSelection(WF)

WF is the workflow template with a set of tasks (T1, T2, ...Ti...Tn) and a set
of control flow (CF1, CF2, ...CFi...CFn).
let s = null, sp = null and sn = null be selected service for current task,
selected service for previous task of Ti−1 and selected service for next task
of Ti+1.
let Sp = empty be the set of candidate services for previous task of Ti−1.
for Ti=1 to Ti=n do

let Sc = empty be a set initial set of services.
Sc = DiscoverServices(Ti)
if Sc! = empty then

s=SelectingCompositionService(Ti, sp, sn, Sc)
if CFi==“split” then

Invoke s
while s is not successfully invoked do

Sc = Sc - s
s=SelectingCompositionService(Ti, sp, sn, Sc)
Invoke s

end while
else

sp=GetInvokedService(Ti−1)
if sp! = empty then

sn=s, sp=GetInvokedService(Ti−2)
S ′c=DiscoverServices(Ti−1)
s′=SelectingCompositionService(Ti−1,sp, sn, S ′c)
Invoke s’
while s’ is not successfully invoked do

Sc = Sc - s’
s’=SelectingCompositionService(Ti, sp, sn, Sc)
Invoke s’

end while
end if

end if
else

Failure to exist the algorithm
end if

end for

5.3. BCCbSS: Backwards Composition Context based Service Selection 108

Algorithm 2 SelectingCompositionService(T,sp, sn, Sc)

sp and sn are selected service for previous task of T and selected service for
next task of T. Sc is a set of candidate service for T.
if Sc != empty then

let R be a set of ranking scores for Sc and ri is the individual score.
for each service si in the Sc do

Invoke function ri=F(si, sp, sn)
reorder Sc sorted descending by R values

end for
s=the first service in Sc

else
s=empty

end if
return s

E1.2 = Soft global optimization criteria amended and derived from composition

context related to the previous selected service (if the previous selected service

does not exist, then E1.2 = 0) for the task in the workflow;

E1.3 = Soft global optimization criteria amended and derived from composition

context related to the next selected service (if the next selected service does

not exist, then E1.3 = 0)for the task in the workflow; and r=1, | W1 |=| W2 |=|

W3 |= 1/3 in

E1 = (| W1 | Er
1.1+ | W2 | Er

1.2+ | W3 | Er
1.3)

1/r, (5.1)

E1 aggregates all the soft optimization criteria.

E2 = Hard optimization criteria (including both global and local context) rep-

resent all mandatory requirements which must be satisfied. Any hard criterion

evaluating to 0 will lead to an aggregation result of 0. The soft criteria handle

all other preferences. Finally,

F = (| W1 | Er
1+ | W2 | Er

2)1/r, (5.2)

5.3. BCCbSS: Backwards Composition Context based Service Selection 109

Figure 5.3: BCCbSS step 1

where r=-0.72, | W1 |=| W2 |= 0.5.

Here, r is assigned to the value of conjunctive partial absorption function which

has been explained in Chapter 4. When we using the conjunctive partial ab-

sorption function, 0 score for hard criteria (E2) delivers a overall 0 aggregation

score for the service. If the service satisfies all the hard criteria (we have dis-

cussed in Chapter 4), then the hard criteria should be treated the same as

the soft criteria. Therefore, we assign the equal weights (0.5) to soft and hard

criteria.

5.3.4 An example and complexity analysis

To demonstrate the entire service composition process and complexity analysis,

a simple composite price-based example is illustrated here. In this worked

example, the user wants the cheapest composite service. The worst scenario is

the tasks are sequentially ordered (all tasks require to be invoked finally). The

workflow includes 4 tasks: T1, T2, T3 and T4. The service selection process

is illustrated step by step below.

Step 1: n candidate services (S11, S12 ... S1n) are discovered for T1, containing

S1i and S1k (1 ≤ i, k ≤ n) which have the cheapest cost of £2 and £5

(respectively see Figure 5.3). In this instance, there is no composition context

5.3. BCCbSS: Backwards Composition Context based Service Selection 110

Figure 5.4: BCCbSS step 2

available, so S1i is selected as it is the cheapest. In this step, the complexity

of the service selection process can be proved to be O(n) because it is a simple

sort problem.

Step 2: m candidate services (S21, S22 ... S2m) are discovered for T2, contain-

ing S2i (1 ≤ i ≤ m). Since S1i has been selected for the first task in Step 1, we

now only consider the composition context (special cost in this case), where

S2i costs £5 if composed with S1i is the cheapest combination fee among the

m candidate services. Therefore, the S2i is selected in this step (see Figure

5.4). The complexity of this step is still O(m) because it only considers the

composition context with the fixed service S1i which is selected in previous

step.

Step 3: Re-select the service for T1 in order to check if there is a better combi-

nation between the first two tasks with S2i selected. Based on the composition

context with service S2i selected (there is no previous selected service for T1),

S1k is re-selected for T1 and invoked in this step as S1k+S2i= £6 < S1i+S2i=

£7 (see Figure 5.5). The complexity of the step becomes O(n) again as the

next selected service is fixed.

Step 4: l candidate services (S31, S32, ... S3i, ... S3l) are discovered for

5.3. BCCbSS: Backwards Composition Context based Service Selection 111

Figure 5.5: BCCbSS step 3

Figure 5.6: BCCbSS step 4

5.3. BCCbSS: Backwards Composition Context based Service Selection 112

Figure 5.7: BCCbSS step 5

Figure 5.8: BCCbSS step 6

T3, where S3i costs £3 to be composed with S2i and presents the cheapest

combination fee among the l candidate services. Therefore, S3i is selected as

the cheapest composition service with S2i (see Figure 5.6). The complexity

can again be shown to be O(l).

Step 5: the selection is restarted for choosing a service for T2 based on previous

invoked service and next selected service. The S2i remains as the selected one

and is invoked (see Figure 5.7). Although the previous and next selected

services need to be considered, the complexity is O(m) as previous and next

services are fixed.

5.4. Contributions of BCCbSS 113

Figure 5.9: BCCbSS step 7

Step 6: g candidate services (S41, S42, ... S4i, ... S4g) are discovered for T4,

where S4i is free if composed with S3i, which are selected for the previous task.

Thus, S4i is selected (see Figure 5.8). The complexity is O(g).

Step 7: the selection is restarted for choosing a service for T3 based on the

previously invoked services and next selected service. Again, S3i is the best

one and is invoked. The complexity is O (l). Finally the last select service

S4i is invoked (see Figure 5.9). As result, we can see that every step takes

time linear in the amount of available services. If there are x tasks in the

workflow, then the whole composition process has 2x-1 selection steps and the

complexity has an upper bound of (2x-1)O(y), where y is the different numbers

of candidate services for the task with the longest choice of services.

5.4 Contributions of BCCbSS

The overall services composition approach can be considered as a sequence

of service selections and the length of that sequence depends on the number

of tasks in the workflow template. The data of the composition context are

gained through the addition of facts from observation and the history. The

BCCbSS approach has following advanced characteristics:

5.4. Contributions of BCCbSS 114

1. The approach performs the selection and invocation step by step. Some

research work [CPEV05, ZBN+05, YL05] suggests completing a service

composition by selecting all the services for the whole workflow template.

However, this is not an efficient way, if there are many tasks involved

in the workflow and many candidate services are available for each of

them. Taking the organising meeting scenario as an example, if there

are 4 services for each of the 4 tasks, then the selection method has to

compare the entirely 256 different composition solutions for identifying

the adequate service composition choice. With more service available, the

state explosion problem will affect the approach efficiency and scalability.

The step by step strategy can essentially avoid such a problem because

each step has only to consider a small number of the services, which is

the number of the available services for the task, previous selected or

invoked service and next selected service (only in re-selection process).

2. The approach can guide the selection method to make a choice based on

existing knowledge of the composition context. In the organising meet-

ing scenario, when the people search service from Provider 1 has been

selected for task 1, the rest of the selection tasks should only consider the

composition context related to the selected service because other people

search services’ composition context is no longer useful.

3. The approach considers not only local constraints (user context) but

also the composition context as inputs for the selection method. The

local constraints specify the user’s preferences for the individual service,

e.g. quality, execution duration and prices. Since it is difficult for user

to judge the global view of the composition service, the composition

context should be automatically applied. The composition context or

global constraints consider the interaction and composition properties

among the selected services and available services for the current task.

4. The approach is a run-time approach. The user’s preferences may fre-

5.5. Related Work 115

quently change according to his/her current status, as will the service’s

NFPs and composition context. These dynamic features require a run-

time composition approach rather than a design-time composition ap-

proach. The run-time composition approach can make sure that the

composite solution is the most suitable one for the current user’s status

and composition context.

5. The approach is fault tolerant. When a selected service can not per-

form adequately in a certain step, the approach allows for the next best

service to substitute the current selected one in order to complete the

composition task. Fault tolerance is very important for a run-time ap-

proach and real service composition scenarios. It increases the likelihood

of successful completion of the workflow. In the example of planning a

trip, when the air ticket has been booked, the composition requires the

insurance purchase to be successful, because the previous step is costly

and irreversible.

5.5 Related Work

Two kinds of service selection approaches have been developed in order to

address the Web service composition problem, which are found on local optimal

selection and global optimal selection.

Local optimization based service selection refers to selection methods

which only take certain selection constrains related to the current activity in

the workflow into account without specifying and considering the constraints

implied by the workflow context and the consequences that the choice will have

on later activities. For example, a policy based BPEL workflow Web service

selection method is presented in [KHC+05]. It extends BPEL for run-time

adaptation of service by adding the policy reference to each node. The policy

5.5. Related Work 116

documents provide the local optimization rules which are independent from

each other. The service selection process is applied at each node separately. A

similar approach was also presented in the earlier e-Flow project [CIJ+00]. The

biggest advantage of the local optimization methods is efficiency in selection

time - the worst case can be solved in polynomial time. However, they not

necessarily select the optimal or even close to optimal service in the global

composition context.

Global optimization based service selection, on the other hand, considers

the global selection constraints to select a group of services rather than one

service for a node in the composition workflow. The key assumption of this

strategy is that all suitable services for each node have already been discovered

and are inside the global optimization search space. [CPEV05, ZBN+05] are

two example approaches. By studying these approaches, we find they surely

narrow the disadvantages pointed out for local optimization. However, they

introduce their own problems.

• Low scalability: In general, multi-QoS constrained service selection with

optimization is an NP-complete problem [YL05], which reduces scalabil-

ity of the methods.

• Lack of fault tolerance: Global optimization methods return a set of

combined services as the final solution package. However, if one service is

not available or throws an exception at run-time, then the whole solution

package fails.

• Low flexibility: Global optimization methods need to know all con-

straints at design time. However, some selection constraints are only

known when certain data is produced at run-time. For example, con-

sidering a conditional choice in a composition, the complete global con-

straints are available only after the condition is evaluated.

5.6. A Worked Example 117

• Lack of reflection of local constraints that are important to reflect the

user’s context.

In contrast, the BCCbSS approach does not need to predict all the global con-

straints in advance. It makes the selection decisions on an activity by activity

bases on the currently existing local and global composition context. The

composition context is growing as we proceed through the activities. Based

on these context constraints, we select the best service for the next activity

according to run-time knowledge. As we continue to select services, the com-

position context grows allowing for more fine-grained selection.

5.6 A Worked Example

Let us reconsider the planning a trip scenario. Assume that a person is located

in the UK and plans a trip to China. The user context information is

• Activity: travelling from UK to China;

• Payment method: Visa or MasterCard.

For the first task of booking transport, only local constraints derived from user

context are considered. The service is selected by using the context-aware TLE

service selection method as illustrated in the single service selection scenarios.

We assume flight booking service B is selected.

Once the first task is completed by invoking service B, the composition context

related to service B is considered for selecting the the service. We understand

that the purchasing insurance task and reserving hotel task are parallel activi-

ties, which means the composition context between those two types of services

does not need to be considered. We can use the purchasing insurance services

5.6. A Worked Example 118

Context PIS1 PIS2 PIS3 SB
Execution error
W=-0.2 4 3 0 0
connection error
W=-0.3 0 with 1 with 2 with 0
Provider
W=0.2 0 with 0 with 1 with 1
Coordination time (seconds)
W=-0.1 2.2 with 0.5 with 1.2 with 0
Physical location
W=0.1 0 with 0 with 1 with 1
cost £2 with
W=-0.1 £4 with £10 with £5 with others 0

Table 5.2: Composition context of the example conjunction with service B
(SB)

PIS = Purchasing Insurance Service

selection process to show how context composition context is used for service

composition.

Supposing we find 3 candidate services for purchasing insurance, Table 5.2

lists the context information for the 3 available insurance purchasing services.

As shown, the payment method is a hard criterion while the others are soft

criteria.

Ranking results for the services are gained by applying the type-based cri-

teria evaluation functions. The results for the given context constraints are

presented in Table 5.3.

Then, we aggregate all context constraints to obtain the final score for each

service. To achieve this goal, we use equation 5.1 and 5.2 to aggregate the

soft and hard criteria constraints. In this example, there is no soft local opti-

mization criterion, so we ignore E1.1 in equation 5.1. r = 2.384 is selected for

the formula 5.1 by analysis and automatic calculation (see Chapter 4). Soft

composition criteria aggregation results are: PIS1 = 0.64, PIS2 = 0.47 and

PIS3 = 0.97. As result, equation 5.2 produces the final selection results by

5.7. Summary 119

Context TBS1 TBS2 TBS3
Execution error
W=-0.2 0 0.25 1
connection error
W=-0.3 1 0.5 1
Provider
W=0.2 0 0 1
Coordination time (seconds)
W=-0.1 0 1 0.59
Physical location
W=0.1 0 0 1
cost
W=-0.1 0.75 0 1
Payment method
W=1 0 1 0.5

Table 5.3: The composition service selection results
TBS=Type-based evaluation scores for service

considering the hard financial support criterion: PIS1= 0, PIS2 = 0.65, PIS3

= 0.67. PIS3 is the best suitable service after calculation.

We use the same process to select a hotel booking service at the same time.

Finally, we backward refine the first service selection because it has not been

invoked. If the flight booking service B is still a best one for considering the

composition context with PIS3 and the other selected hotel booking service,

then service B is invoked. Since there is no other task is required, then the

rest of selected services are invoked. If any of the selected services has failed to

complete the task, the error will be logged into the composition context store

and the second highest scoring services will be tried instead.

5.7 Summary

Selecting the most suitable services to complete a complex composite service

is an important research topic. In terms of context-awareness, we believe that

5.7. Summary 120

the global composition context should be considered together with the local

non-functional properties as a crucial factor for the service selection in the

composition process.

In this chapter, we introduced the concept of composition context which is di-

vided into 3 classes and 8 specific elements identified by analysing the workflow

service selection scenarios of organising a meeting and planning a trip. The

8 elements include runtime dynamic information, history mining information

and static description information.

Based on the composition context, we presented a novel Backward Composi-

tion Context based Service Selection (BCCbSS) approach to compose different

type of services. The BCCbSS composition process fully considers both user’s

local context and composition context factors by adopting the TLE service

selection method with a backward step refining mechanism.

Above research work is developed as composition context model and service

composition engine shows in Figure 5.10. At the end of this chapter, we have

discussed all the relevant components in our proposed process architecture.

Comparing the approach to the context-aware service composition require-

ments and other composition approaches, our approach has several advantages:

The approach is a fault tolerant step by step process. The method scales well

for large workflow as well as large numbers of services, as the ranking consid-

ers only services for the current task and has access for the wider workflow

condition through the composition context. The selected services are dynamic

bound to and invoked at run-time rather than statically bound at design time.

5.7. Summary 121

Figure 5.10: Components are discussed in Chapter 5

Chapter 6

Implementation and Evaluation

We introduced the context-aware TLE service selection method to tackle both

single service and composition service scenarios in the previous two chapters by

considering user context and composition context respectively. In this chapter,

we discuss the method evaluation through a web-based simulation system and

focus on two major aspects: adequacy and scalability.

Adequacy means that the highest scoring service should be the most suitable

one. For single service selection, the suitability is computed according

to NFPs preferences and the user run-time context. For service com-

position, the suitability additionally takes the composition context into

account.

Scalability refers to the evaluation questions of how the method copes with

an increasing number of services, criteria (context-aware), workflow steps

and their combination.

Adequacy and scalability will be more clearly defined in Section 6.2 and 6.3. In

addition to the case studies discussed in Chapter 1, we use more complex sim-

122

6.1. Implementation 123

Figure 6.1: Implementation layers

ulation test cases in order to obtain stronger evaluation results. The reminder

of the chapter is structured as follows:

Section 1 introduces the implementation of the TLE simulating system. Sec-

tion 2 concentrates on the evaluation of adequacy. Section 3 evaluates the

scalability of the selection method for both single service selection and com-

position scenarios. Section 4 draws the conclusion of the chapter.

6.1 Implementation

To implement and evaluate the proposed context-aware TLE service selection

method, we designed a three-layer simulation system (see Figure 6.1).

Interaction layer provides a web-based user interface to allow service providers

to register their services, workflow specifications and to allow service

users to register their context to the system and send service selection

requests.

Service selection layer essentially consists of a Web service called relevance

engine that implements the TLE service selection method.

6.1. Implementation 124

Figure 6.2: Work bench index page

Data layer includes the registered services information (NFPs’ meta data)

and user’s context information as discussed in Chapter 3. Additionally,

it contains the composition context and workflow specifications.

In order to simplify the system implementation and focus on the research issues

of interest. The implementation only covers the important parts in terms of

service selection and composition.

Figure 6.2 shows the snapshot of the web-based UI. The user needs to register

their context to the system first in order to search a service (or a compos-

ite service based on the selected workflow). The page also allows to browse

for service category information, registered services, workflows and registered

users.

After a user successfully logs into the system, he/she can go to the “search

a service” page (see Figure 6.3.a) which enables the user to enter the service

keywords describing functionality or select an existing workflow specification

file. After submission, the service selection or composition results will be

displayed as shown in Figure 6.3.b. The services will be sorted by the ranking

scores and the most suitable one will be at the top.

The service providers can register their services through the web-based user

interface by specifying the service name, provider name, URL of meta infor-

mation and service category with detailed descriptions. If there is no existing

suitable category for the service, the provider can also create a new category

6.1. Implementation 125

Figure 6.3: Service ranking results pages

Function Input Output Description
FindRelevance() keywords : Service[] : The operation takes user’s functional

String Service requirements keywords as input and
matches the correct service for
categories returning all functional
suitable services as output.

ServiceRanking() Service[]: Service[] : The operation takes FindRelevance()
Service, Service operation’s output as one input
userId : (sorted by parameter and user’s id as another
String ranking parameter to return a ranked list of

scores) services.

Table 6.1: Relevance engine

as shown in Figure 6.4. For that, the service provider needs to specify the

category name, description and importantly define which meta data is related

to this category by ticking the appropriate check boxes.

The relevance engine is implemented in Java using Axis2 technologies on the

Apache Tomcat server platform. The service interface is defined in Table 6.1.

The data layer is simply implemented as a storage of OWL files which contain

context information of users and NFPs’ data of services (as we discussed in

Chapter 3).

6.2. Adequacy Evaluation 126

Figure 6.4: Create a new service category

6.2 Adequacy Evaluation

6.2.1 Adequacy

It is desirable to show the adequacy of the proposed service selection method.

However, we need to explain what is meant by adequacy in this context. As

discussed informally in the beginning of the chapter, adequacy means that

the most suitable service with respect to the user. However, most suitable is

difficult to define in general because it depends on different views and con-

cerns. In terms of context-aware service selection, the suitability is composed

of three important factors: (1) suitability with respect to user context, (2)

suitability with respect to NFP preferences and (3) suitability with respect to

the aggregation of results.

1. Suitability with respect to user context is the basic level of adequacy,

because the users should have the ability and convenience to use the

6.2. Adequacy Evaluation 127

selected service. Therefore, the selected service should definitely match

the users context information.

2. Suitability with respect to NFP preferences is the satisfaction level ade-

quacy. When services reach the basic level, the service is a better choice

if it also satisfies the service selection preferences, such as security, cost,

time and cooperation properties. Normally, different NFPs have different

important concerns in different situations. Therefore, the most suitable

service requires to reflect the NFP preferences.

3. Suitability with respect to the aggregation of results is the aggregation

adequacy by considering selection requirements between replaceability

and simultaneity as discussed before. This cannot be easily detected by

users.

The adequate selection result satisfies the maximum suitability described above.

An inadequate service does not hold the context-aware suitability.

Context information, NFP preferences and aggregation functions are different

for different selection cases, therefore, these three levels of suitability need to

be evaluated through case by case analysis in order to find out which selection

choice is better in the particular scenario, and this decision is not an automatic

or completely objective one.

6.2.2 Adequacy measurement

In order to evaluate the adequacy of our proposed service selection method, we

apply our TLE service selection method together with three selection methods

mentioned in Chapter 4 to the scenarios of selection notification service and

medical support service. Recall that these three methods are the most used

methods by other service selection approaches:

6.2. Adequacy Evaluation 128

(1) Weighted sums:

E =
n∑

i=1

WiEi (6.1)

(2) Weighted Conjunctions:

E =
n∧

i=1

WiEi (6.2)

(3) Weighed Disjunctions:

E =
n∨

i=1

WiEi (6.3)

There are other selection mechanisms (e.g. random selection method) that

could be applied to the service selection issue. However, these methods are

rarely used.

Notification service selection adequacy evaluation

The test cases are designed based on the notification service selection scenarios

introduced in Chapter 1. A meeting organizer wants to send a meeting notifi-

cation to the invited people (assuming the organisation is in the UK) using the

most suitable notification services based on their different context and service

selection criteria. The notification services’ NFPs meta data is represented in

Table 6.2. Recall that there are three different typical scenarios.

6.2. Adequacy Evaluation 129

L
o
ca

ti
on

D
ev

ic
es

P
ri

ce
R

es
p

on
d

T
im

e
P

ri
va

cy
P

re
fe

r
C

on
ta

ct
in

g
W

ei
gh

t=
1

W
ei

gh
t=

1
W

ei
gh

t=
-0

.3
W

ei
gh

t=
-0

.9
W

ei
gh

t=
0.

5
W

ei
gh

t=
0.

3
n
ot

if
ic

a
ti

on
se

rv
ic

e1
E

u
ro

p
e

M
ob

il
e

p
h
on

e,
E

m
ai

l
0.

4
(U

K
0.

1)
0.

4
s

0.
6

n
o
|n

o
|y

es
n
ot

if
ic

a
ti

on
se

rv
ic

e2
U

K
E

m
ai

l,
IM

0.
1

0.
8

s
0.

9
n
o
|y

es
|y

es
n
ot

if
ic

a
ti

on
se

rv
ic

e3
E

u
ro

p
e

P
D

A
,

IM
0.

5(
U

K
0.

1)
0.

6
s

0.
9

y
es
|y

es
|n

o

T
ab

le
6.

2:
S
el

ec
ti

on
cr

it
er

ia
an

d
se

rv
ic

e
N

F
P

s
m

et
a

d
at

a
U

K
0.

1
m

ea
n
s

th
at

in
U

K
th

e
se

rv
ic

e
p
ri

ce
is

0.
1.

6.2. Adequacy Evaluation 130

Location Devices Price Time Privacy PCW
S1 CbC CbC 0.25 (1) 1 0 0 | 0 | 1
S2 CbC CbC 1 (1) 0 1 0 | 1 | 1
S3 CbC CbC 0 (1) 0.5 1 1 | 1 | 0

Table 6.3: Evaluated scores for each service’s NFPs by Type-based evaluation
functions

1. Bob is on holiday with only his mobile phone and PDA. The holiday

location is in Spain. On holidays, Bob prefers to be contacted by PDA

rather than mobile phone message.

2. Alice has switched off her mobile phone to conserve battery power, but

she is online using IM (IM is also her preferred method of contact).

3. John is working in his UK office with access to a wide variety of com-

munication devices (mobile phone, email, IM and PDA). However, he

prefers to be contacted by email message.

We firstly obtained the possible evaluated individual criteria evaluation results

for all services in different scenarios as shown in Table 6.3. In the table, CbC

means that the evaluation scores may different for different scenarios. Finally,

the selection results for all four service selection methods are shown in Table

6.4 (our method’s selection results are gained by using the simulation system

and the other methods’ selection results are gained by manual calculation).

Now we will exam the adequacy of our method and compare it to other three

methods.

Scenario 1. Four types of context information need to be considered in this

case. Firstly, Bob is out of UK, which requires a service that can serve

in user current location. Secondly, Bob has mobile phone and PDA for

getting the messages, hence a service which does not support sending

mobile phone and PDA messages is not suitable. Thirdly, Bob prefers

to be contacted by PDA message on holiday, which means a service

6.2. Adequacy Evaluation 131

Sum Conjunction Disjunction TLE
Scenario 1
S1 2.475 0 1 0.728
S2 0.8 0 0.5 discard
S3 2.75 0 1 0.727
Scenario 2
S1 2.2 0 1 discard
S2 3.1 0 1 0.911
S3 3.55 0.167 1 0.923
Scenario 3
S1 3.0 0 1 0.758
S2 2.6 0 1 0.749
S3 2.75 0 1 0.727

Table 6.4: Test results for emergency situation

which can send PDA messages is more desirable from Bob’s point of

view. According to the context information, S2 should be penalized

because it only works in the UK and can not send any mobile phone and

PDA messages. S1 and S3 are suitable services based on context. From

the NFP preferences side, price and participant prefer method are less

important than time and privacy properties (see Table 6.2). It is difficult

to judge which service is better at the moment because two services both

have one higher score on less important properties and one higher score

on important properties. Therefore, we need to consider aggregation

level suitability to distinguish which service is better. From Table 6.3,

we can see that S1 gets 0 (Bob prefer PDA message, but S1 only can send

Mobile phone message) for prefer method and S3 gets 0 for price. Since

these two preferences are less important ones, the aggregation should

make these 0 scores affect the final selection decision less and make the

higher scores for the more important preferences substitute the lower

scores. Through the analysis, this scenario is a typically replaceability

aggregation case. The most important preference is time in this case and

S1 has the higher score. Thus, S1 should be the most suitable service.

Looking at the selection results table, the conjunction method penalized

6.2. Adequacy Evaluation 132

all services because no service satisfies all the NFP preferences, while

the disjunction method can not justify which service is better between

S1 and S3. In contrast, summary and TLE methods both selected the

suitable services, but only TLE selected the most suitable services and

discarded the unsuitable service.

Scenario 2. Participant Alice has a very different context. She is in the UK

and can only be contacted by IM message. For context-aware suitability,

S1 should be filtered out because it does not support IM message. From

the preference perspective, both S2 and S3 have the same price in UK (so

they both score 1 for the price) and satisfy the prefer mathod preference.

In Bob’s case, we already discussed that the replaceability should be

applied, which allows higher scores for important preferences replace

the low scores for less important preferences due to the 0 score values.

For Alice, we only need to compare the two important factors of time

and privacy which should not be overshadowed by higher scores for less

important price and prefer method preferences. Because S3 got 0.5 and

1 for the time property and privacy property and S2 got 0 and 1 for

the time and privacy properties, the best suitable service should be S3

because it has highest score for the other important criterion of privacy.

The selection results show that exception the disjunction method, all

methods produced the adequate selection. However, only the conjunction

and TLE method disqualified the unsuitable service.

Scenario 3. Participant John is in the UK and all four types of devices are

available. Consequently, all three services are suitable from a context

point of view. Concentrating on time and privacy, it is difficult to justify

which service is better than others because they all have some good or

bad side and we can say all the services are suitable. However, time is

more important than privacy between them, then S1 is the most suitable

one for this case because only S1 got 1 for time criterion. This time, only

6.2. Adequacy Evaluation 133

Services Availability Response Location Support
Time Level

Normal weights 1 0.6 0.9 0.3
Emergency weights 1 0.5 0.2 0.9

S1 yes 2 minutes 27.01, 56.37 minor
S2 yes 3 minutes 28.35, 57.29 minor,

severe

Table 6.5: Two available medical support services

TLE and summary methods choose the adequate service.

Medical support service selection adequacy evaluation

Recall that there are three typical scenarios for medical service selection.

1. The injury has been reported close to service 1 and it is a minor injury.

2. The injury has been reported close to service 2 and it is a minor injury.

3. The injury has been reported close to service 1 but it is a severe injury

(severe injuries raise an emergency status).

Two medical support services are available with 4 selection criteria as shown in

Table 6.5. We gained the selection results for the 4 service selection methods

and they are shown in Table 6.6.

Scenario 1. The person only gets a minor injury and is close to S1. Therefore,

from the context suitability aspect, S1 is the most suitable one. More-

over, the preferences show that location and response time are more

important than service level in the normal situation, which means that

S1 is much better than S2. For aggregation level, S1 satisfies all criteria

and S2 only matches the unimportant service level criterion. As a result,

the high score for an unimportant criterion will not strongly affect the

6.2. Adequacy Evaluation 134

Sum Conjunction Disjunction TLE
Scenario 1

S1 2.8 0.3 1 1
S2 1.3 0 1 0.1

Scenario 2
S1 1.9 0 1 0.4807
S2 2.2 0 1 0.6714

Scenario 3
S1 2.5 0 1 0.87
S2 1.3 0 1 0.9086

Table 6.6: Medical support service selection results

final selection scores. Thus, S1 satisfies all three levels of suitability and

it is the most suitable one. In this scenario, all service selection methods

select the right service but the disjunction method cannot separate the

two services.

Scenario 2. This case is very similar to the pervious case only that the injury

is close to S2 rather than S1. Therefore, S2 should be the most suitable

based on the same analysis as before. From the selection results, we

found that only TLE produces the adequate answer.

Scenario 3. This case has a very important difference from the previous two

cases as the person has a severe injury (emergency situation). The emer-

gency situation breaks down normal service selection preferences to con-

sider the support level as the most important criterion. Therefore, it is

easy to understand that S2 should be the most suitable medical service

and only the TLE method found the adequate service.

By analyzing the different service selection cases, our method always provided

the expected selection results, and hence is adequate with respect to the ad-

equacy definition. The weighted Sum method gave just about 50% adequate

selections but without discarding unsuitable services. Conjunction method got

two suitable selection result (around 33.3%) and the disjunction method only

6.3. Scalability Evaluation 135

manage to produce 1 adequate answer overall (around 16.7%). Therefore, we

can conclude that our service selection method is adequate and performs better

than other commonly used selection functions.

In the composition scenario, we take the composition context criteria into ac-

count as an extra factor and the selection scenarios become more complex.

However, the fundamental selection calculation does not change and the com-

plexity does not affect the adequacy of the method especially as the otherwise is

a repeated individual service selection. Thus, we will not discuss the adequacy

evaluation in more detail.

6.3 Scalability Evaluation

Scalability is an important issue for service selection methods. In order to

accurately discuss the scalability, we constructed two and three test cases for

single selection scenarios and composition scenarios.

6.3.1 Single selection mode scalability

There are two scenarios for scalability evaluation: increasing the number of

services with fixed number of criteria and increasing the number of criteria

with fixed number of services

Test case 1: Increasing number of services

The first test case focus on measuring the selection time with regard to an

increasing number of services. We selected 10 different increasing number of

services as 2, 22, 23, ..., 210 with 6 criteria (6 is the maximum number of criteria

in our example scenarios and hence can be seen as realistic).

6.3. Scalability Evaluation 136

Figure 6.5: Evaluation results for single service selection test case 1

Figure 6.5 shows a linear increase in runtime, hinting at good scalability of our

method with regard to the number of services with a fixed number of criteria.

Test cast 2: Increasing number of criteria

In order to evaluate the second scalability aspect of increasing the number of

criteria, we tested 6, 12, 24, 48, 96 and 192 criteria with 4 competitive services

for each case (4 services are common number of services for a service selection

task in our example scenarios). The test results are presented in Figure 6.6. By

analyzing the results, we see that again we have a linear increasing in runtime.

We can see that the proposed method has a good scalability against large

number of criteria. In real world scenarios, the number of criteria is rarely

more than a couple of hundreds, which is the reason why we tested up to 192

criteria.

From these 2 tests, the most important conclusion is our method scalability

can be shown as a linear function (O(n) complexity) when increasing number

6.3. Scalability Evaluation 137

Figure 6.6: Evaluation results for single service selection test case 2

of criteria and services respectively.

6.3.2 Composition mode scalability

In this subsection, we evaluate the selection scalability for composition sce-

narios. As a starting point, we need to look at which types of test cases are

required. Based on the evaluation results of single selection mode, we under-

stand that the scalability of increasing number of services, criteria and their

combinations. Without considering the composition context involvement, we

can get Lemma 1, where n is the number of workflow activities, Tnw is the cost

time of a completing services selection for a workflow with n composition steps

and T i
nsc is the time for suggesting a best service in a single selection scenarios

on ith activity and the worst case that all activities are required to be executed

(without “split” control flow).

Lemma 1 Tnw =
∑n

i=1 T i
nsc

Prove: If a workflow which has n activities, then each step can be seen as a

service selection issue individually without considering the composition context.

Therefore, the overall time can be measured as

Tnw = T 1
nsc + T 2

nsc + ... + T n
nsc =

∑n
i=1 T i

nsc.

6.3. Scalability Evaluation 138

In fact, we also did the test by using our simulation system. The test results

show the same indication from the macroscopic view, although there are some

small inaccuracies because of precision of measurements.

Now, the big evaluation question is the scalability with composition context.

In order to give the answer, we designed 3 test scenarios to analysis.

1. Increasing the composition context with 4 services involved in each step

of 3 composition steps.

2. Increasing the service numbers for each steps of 3 by considering all

composition composition context.

3. Increasing the composition steps with 4 services and all composition

context involved in each composition step.

Test scenario 1

We defined 6 + i selection criteria for this scenario where 6 are the single

selection scenarios’ criteria and i is the increasing number of the composition

context criteria raising from 1 to 8 (we defined 8 composition context criteria

in Chapter 5). From the test results data (see Figure 6.7), we can see that the

time line is very close to a linear function.

Test scenario 2

In this scenario. we combine the maximum of 8 composition context criteria

and increasing numbers of services from 21 to 28 for each of the 3 steps. Figure

6.8 represents that the method is close to a linear function too.

6.3. Scalability Evaluation 139

Figure 6.7: Evaluation results for composition selection test case 1

Figure 6.8: Evaluation results for composition selection test case 2

6.3. Scalability Evaluation 140

Figure 6.9: Evaluation results for composition selection test case 3

Test scenario 3

The last scenario is designed to test the scalability of number of composition

steps. There are maximum 8 number of composition context criteria and 4

services for each step. The test results in Figure 6.9 shows that the method is

also a linear function to the increasing numbers of composition activities.

From above three case analysis and the test figure, the proposed method always

shows a linear function line which implies the method has a good scalability.

6.3.3 Discussion

From the scalability evaluation, we learn that the method shows a linear func-

tion for single service selection scenarios when increasing number of services

and criteria. We expect that complexity is a quadratic when increasing both

of them at the same time. However, the number of criteria is no more than

a hundred in the realistic situation (normally it is less than 10 in our studied

cases). Therefore, the evaluation results show that the method is very efficient

to tackle single service selection.

For service composition scenario, the method efficiently works with under 10

depth of steps and works acceptably under 20 depth of steps. It also shows

that more than 5 minutes cost in more than 40 steps situation. However, we

6.4. Summary 141

need to discuss two things here: (1) from business process point view, it is not

a good workflow design for composing around 40 services to enable achieving a

business goal. The basic reason is that one more transaction added into work-

flow, more than one risks will be added as well, such as failure error, over cost,

transaction control, security issues to fail a successful composition. (2) The

BCCbSS approach is a step by step mechanism means that the composition

is divided into individual selection and invocation process. When a service is

selected and invoked, the output comes out step by step for service user to use

rather than waiting for the overall completion of the workflow.

6.4 Summary

In this chapter, we evaluated adequacy and scalability of the context-aware

TLE service selection method by using the simulation system. We implemented

the method inside a 3 layered architecture which includes Interaction layer,

Service selection layer and Data layer.

In order to discuss the adequacy, we defined what it means in this context,

adequate selection means that the highest ranked service is the most suitable

service which satisfying suitability with respect to context, NFP preference

and aggregation.

Our adequacy evaluation was based on 3 different notification service selection

scenarios and 3 different medical support service selection scenarios. In order

to compare our method to other service selection methods, we also evaluated

the weighted sum, pure conjunction and pure disjunction methods. The test

results show that all selection decision made by the context-aware automatic

TLE service selection method are adequate and it outperforms other selection

methods.

On the scalability side, the evaluation was divided into single selection and

6.4. Summary 142

composition by testing different numbers of services, criteria, composition steps

and their combinations. The test results show that the context-aware TLE

service selection method has a O(n) scalability, which is our desired research

object.

Chapter 7

Conclusion

The overall aims of our research are (1) to generate context-aware service se-

lection criteria based on user’s context information; (2) to develop an efficient

and automated service selection method and (3) to investigate a service com-

position algorithm which is composition context sensitive and able to use the

proposed selection method.

7.1 Research Contributions

We divided our research aims into three aspects and each aspect comes with

several subgoals and objectives. We will now discuss our research contributions

against each of them.

7.1.1 Context-aware criteria generation

Reflecting a user’s run-time context situation. Applying the user’s cur-

rent context information to the service ranking method is an important part of

143

7.1. Research Contributions 144

our research and objectives. The research challenge is to ensure the context in-

formation gathered dynamically and automatically to affect service selection.

As introduced in Chapter 3, our research solution is to add the user’s con-

text factors into the definition of the context-aware service selection criterion.

Firstly, we modelled the user context information using 4 OWL/RDF models.

Then, each criterion has an attribute of value which obtains the constraint

data from the user’s context through an OWL/RDF context query language.

The attribute is finally used to evaluate the services’ NFPs. Moreover, the

user’s emergency status also affects which weight set should be used for the

criterion evaluation. Therefore, the ranking criteria are reflecting the user’s

current context and affect the service selection and composition results.

Criteria are meaningful and easily mapped to service NFPs. In Chap-

ter 3, we detailed the service category structure which incudes service NFPs

specification for different types of services. The selection criteria are initialized

by the NFPs defined in the category and can be modified later by user context

information. As a result, all dynamically generated criteria are derived from

the service NFPs.

Overall, the TLE service selection method uses a user context information as

ranking criteria and the criteria are context-aware and NFPs related. In this

sense, our dynamic criteria generation process achieved the context-awareness

aim.

7.1.2 Efficient and automatic service selection

Automatically evaluating services NFP against selection criteria.

One of the major purpose of investigating the service selection method is to

assist people in getting the best service when choosing services. People may

not be enable to make the correct decision because the selection constraints are

complex. Therefore, avoiding people’s interaction and automatically ranking

7.1. Research Contributions 145

services is very useful. Moreover, if this is part of a large system, users should

not be concerned with what is eventually an implementation issue. However,

it is difficult to evaluate different types of criteria because each criterion might

be expressed in a different way and requires a specific evaluation function. To

solve the difficulty, the type-based evaluation functions have been developed

in our research. The functions are applied to the correct observed criteria by

mapping the type of the functions to the type of the criteria. The solution

has been successfully used in the ranking method with 4 different types of

evaluation functions.

Different criteria evaluation results are adequately and automatically

aggregated. This is the second difficulty when selecting the most suitable

service. We applied the Logic Scoring Preference (LSP) and Ordered Weighted

(OWA) methods to select the most suitable service. The LSP supports a set

of selectable aggregation functions and OWA supports the calculation method

to automatically select the adequate aggregation function. As results, our

proposed method is automatic by using context-aware service selection criteria.

The TLE service selection method has a good scalability. We have

tested the scalability of the proposed TLE method. The test results show that

the context-aware automated service selection method provides good scalabil-

ity in terms of increasing numbers of services, criteria and composition context.

7.1.3 Composition context sensitive service composition

Both user context and composition context are considered. In the ser-

vice composition problem, the service selection for each required service in the

composition flow needs to consider both local and global context constraints.

The local context means the user’s preferences/context and the global context

means the composition aspects of the optimization context and service collab-

oration records. To enable the combination of the local context with global

7.2. Future Research Directions 146

context, we defined the concept of composition context and populated it with

eight criteria by studying our service composition scenarios. The combination

reuses the proposed service selection method by applying the LSP aggrega-

tion functions to calculate and combine local and global evaluation results.

The global context knowledge grows during the composition process by ap-

plying the Backward Composition Context based Service Selection (BCCbSS)

algorithm.

The composition mechanism has a low complexity. In Chapter 5, we

compared our composition mechanism with other existing service composition

strategies. We concluded that our composition mechanism together with the

service selection method is of low complexity, allowing runtime decisions and

additionally providing good fault tolerance.

7.2 Future Research Directions

The context-aware TLE service selection method and BCCbSS composition

mechanism support a platform for experimenting with context-aware SOA ap-

plications. Although we have successfully achieved our research aims, there

are some remaining and arising research issues and directions in context-aware

SOA research.

Context reasoning for setting individual criteria weight. We presented

a technique to allow user’s context information to change the weight settings.

We divided the weights into three groups of default weights, emergency weights

and user’s custom weights. We reasoned based on the user’s context informa-

tion to understand which group of the weights should be applied. However, the

weights are pre-defined by service category creator, service provider or users

during service selecting time. We can see that the weights are statically defined

as a group and used according to user’s context. In future work, it is very useful

7.2. Future Research Directions 147

to develop a more advanced reasoning process to enable dynamically catching

individual criteria weights at runtime from the user’s context information. In

other words, the criteria weights are not pre-defined, but defined according to

user’s run-time context.

Extending the type-based evaluation function to enable using on-

tology information. So far, we defined 4 types of evaluation functions:

numerical type, boolean type, string set type and distance type. These eval-

uation functions are enough to solve our specified service selection scenarios.

However, it will be very useful and interesting to add more types into the eval-

uation systems to adapt to other domains of service selection. In particular,

to add an ontology based type for evaluating more complex service NFPs.

Enabling the BCCbSS mechanism to be applied to current workflow

execution engine. We developed the BCCbSS mechanism to consider com-

position context information for service runtime composition. At the current

stage, we only managed to simulate the mechanism without really executing

the workflow specification. There are two major future steps for completing the

mechanism. One is to dynamically transform our abstract workflow templates

to the workflow specifications, such as BPEL. The main difference between the

abstract workflow template and executable workflow is that the former only

specifies the workflow structure and required services without binding to ac-

tually services and their invocation endpoints; the latter does both the service

specification and service binding. The abstract workflow templates are not

executable before runtime binding is completed. It is required to transform to

the executable workflow specifications at runtime during the service selection

and binding process. The other approach is to embed the service selection and

binding activities into the workflow execution engine. The engine modification

should allow the engine to have breaking and continuing points when selecting

and binding to the most suitable services.

7.3. Concluding Remarks 148

7.3 Concluding Remarks

Since SOA was firstly introduced nearly a decade ago, runtime service selection

and service composition became a crucial research area for developing more

flexible, more open and business process oriented system. Thus, a wide range

of service selection methods and composition frameworks have been proposed

to deal with variety of these problems. In runtime service selection domain,

however, there is no real investigation on where the selection requirements

come from, what information affects service selection and how to using the

information for service selection. This is the initial goal of our research to

introduce context information for runtime service selection.

However, our proposed solution is constructed based on some important as-

sumptions of advanced technologies, such as the general service concept. There

are different kinds of SOA implementations, and not every service is described

and published using OWL standards as we required. Similarly, composite ser-

vices are not always modelled using an abstract business process specification

language.

Currently, work fulfilling these assumptions is in research or promotion stages

and has not really been fully migrated into industry practice. However, they

are not far a way from realisng this. First of all, SaaS (Software as a Service),

HaaS (Hardware as a Service) and IaaS (Infrastructure as a Service) have

already been proposed and prototyped by Google, IBM and other leading IT

organisations in the form of Cloud Computing, which makes the service concept

more general than just Web service. Secondly, Researchers have developed

tools (e.g. Protege) for easily editing and accessing OWL descriptions, which

means service provider can produce the OWL efficiently. The only issue is

when industry will accept this technology. Finally, abstract workflow in the

form the specification language has already been introduced. Abstract BPEL

specification and other research communities have proposed further suggestions

7.3. Concluding Remarks 149

in this area. Therefore, we believe these technologies will be very realistic in

near future.

We hope that the context-aware automatic service selection approach pre-

sented in this thesis will contribute to the development and usage of SOA in

dynamic collaborative systems in the future.

Appendix A

An Example of OWL-S Profile

for A Notification Service

<?xml version="1.0" encoding="ISO-8859-1" ?> <!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns"> <!ENTITY

rdfs "http://www.w3.org/2000/01/rdf-schema"> <!ENTITY owl

"http://www.w3.org/2002/07/owl"> <!ENTITY xsd

"http://www.w3.org/2001/XMLSchema"> <!ENTITY service

"http://www.daml.org/services/owl-s/1.1/Service.owl"> <!ENTITY

process "http://www.daml.org/services/owl-s/1.1/Process.owl">

<!ENTITY profile

"http://www.daml.org/services/owl-s/1.1/Profile.owl"> <!ENTITY actor

"http://www.daml.org/services/owl-s/1.1/ActorDefault.owl"> <!ENTITY

concept "http://localhost:8080/TestServiceConcept.owl">]> <rdf:RDF

xmlns:rdf= "&rdf;#"

xmlns:rdfs= "&rdfs;#"

xmlns:owl= "&owl;#"

xmlns:xsd= "&xsd;"

xmlns:service= "&service;#"

xmlns:process= "&process;#"

xmlns:profile= "&profile;#"

xmlns:actor= "&actor;#"

xml:base= "http://www.cs.cmu.edu/naveen/profile.owl"

150

151

>

<owl:Ontology about="">

<owl:versionInfo>

$Id: OWLSServiceProfileEmitter.java,v 1.1 extension with NFPs

</owl:versionInfo>

<rdfs:comment>

Add Comment

</rdfs:comment>

<owl:imports rdf:resource="&service;" />

<owl:imports rdf:resource="&process;" />

<owl:imports rdf:resource="&profile;" />

<owl:imports rdf:resource="&actor;" />

<owl:imports rdf:resource="&concept;" />

<owl:ObjectProperty rdf:ID="hasNFP">

<rdfs:domain rdf:resource="#Parameter"/>

<rdfs:range rdf:resource="#NFP"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasNFPName">

<rdfs:domain rdf:resource="#NFP"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasNFPType">

<rdfs:domain rdf:resource="#NFP"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasNFPValue">

<rdfs:domain rdf:resource="#NFP"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasParameter">

<rdfs:domain rdf:resource="#Profile"/>

<rdfs:range rdf:resource="#Parameter"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasParameterName">

<rdfs:domain rdf:resource="#Parameter"/>

<rdfs:range rdf:resource="&xsd;string"/>

152

</owl:DatatypeProperty>

<owl:Class rdf:ID="NFP"/>

</owl:Ontology>

<profile:Profile rdf:ID="NotificationSerivceA">

<profile:serviceName>

Notification Service

</profile:serviceName>

<profile:textDescription>

A service can send notification

</profile:textDescription>

<profile:contactInformation>

<profile:Actor rdf:ID="CompanyA">

</profile:Actor>

</profile:contactInformation>

<profile:hasInput>

<process:Input rdf:ID="parameters_IN">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&concept;#NotiRequest

</process:parameterType>

</process:Input>

</profile:hasInput>

<profile:hasOutput>

<process:Output rdf:ID="parameters_OUT">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&concept;#NotiResponse

</process:parameterType>

</process:Output>

</profile:hasOutput>

<profile:hasParameter rdf:resource="#parameter"/>

<Parameter rdf:ID="parameter">

<hasParameterName rdf:datatype="&xsd;string">NFPParameter</hasParameterName>

<hasNFP rdf:resource="#typeOfMessage"/>

</Parameter>

<NFP rdf:ID="price">

153

<hasNFPName rdf:datatype="&xsd;string">serviceFee</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">numerical</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">0.5</hasNFPValue>

</NFP>

<NFP rdf:ID="typeOfMessage">

<hasNFPName rdf:datatype="&xsd;string">messageType</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">stringSet</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">IM</hasNFPValue>

</NFP>

<NFP rdf:ID="responseTime">

<hasNFPName rdf:datatype="&xsd;string">responseTime</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">numerical</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">200</hasNFPValue>

</NFP>

<NFP rdf:ID="coveredLocation">

<hasNFPName rdf:datatype="&xsd;string">coveredLocation</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">boolean</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">UK</hasNFPValue>

</NFP>

<NFP rdf:ID="privacy">

<hasNFPName rdf:datatype="&xsd;string">privacy</hasNFPName>

<hasNFPType rdf:datatype="&xsd;string">numerical</hasNFPType>

<hasNFPValue rdf:datatype="&xsd;string">0.8</hasNFPValue>

</NFP>

</profile:Profile>

</rdf:RDF>

Appendix B

The Detailed Mapping Between

OWL Diagram to UML

Diagram

The OWL (Web Ontology Language) is built on top of RDF but adds more

complex properties, characteristics and restrictions. Some features such as

Object property, Transitive property, Symmetric Property, InverseFunctional

Property , and advanced cardinality restriction are only support in OWL,

which is an extension of RDF. A mapping between class diagrams and OWL

can be defined as shown in Figure B.1 [YHHRM07].

154

155

Figure B.1: The detailed mapping between OWL diagram to UML diagram

Appendix C

An Example of User’s OWL

Context Information

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >

<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY protege "http://protege.stanford.edu/plugins/owl/protege#" >

<!ENTITY xsp "http://www.owl-ontologies.com/2005/08/07/xsp.owl#" >

]>

<rdf:RDF xmlns="http://www.cs.le.ac.uk/user.owl#"

xml:base="http://www.cs.le.ac.uk/user.owl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

156

157

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Activity"/>

<Activity rdf:ID="Activity_Harry1">

<hasStatu rdf:resource="#Status_Harry"/>

<requireResources rdf:resource="#Resource_Harry"/>

<hasCalendar rdf:resource="#Calendar_Harry1"/>

<hasActivityLocation rdf:resource="#Location_Harry"/>

<hasGoal rdf:resource="#Goal_Harry"/>

</Activity>

<owl:Class rdf:ID="Address"/>

<owl:Class rdf:ID="Calendar"/>

<Calendar rdf:ID="Calendar_Harry1">

<start rdf:datatype="&xsd;string"></start>

<end rdf:datatype="&xsd;string"

>10:30-07-07-2009</end>

</Calendar>

<owl:Class rdf:ID="ContactInfo"/>

<ContactInfo rdf:ID="ContactInfo_Harry">

<rdfs:comment rdf:datatype="&xsd;string"></rdfs:comment>

<hasContactDetail rdf:resource="#ContactType_Harry"/>

<hasPrefer rdf:resource="#preferContact_Harry"/>

</ContactInfo>

<owl:Class rdf:ID="ContactType"/>

<ContactType rdf:ID="ContactType_Harry">

<hasContactWays rdf:resource="#MobilePhone"/>

<hasContactWays rdf:resource="#OnlineRes_Harry"/>

</ContactType>

<owl:DatatypeProperty rdf:ID="Coordinate1">

<rdfs:domain rdf:resource="#Location"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

158

<owl:DatatypeProperty rdf:ID="Coordinate2">

<rdfs:domain rdf:resource="#Location"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Device"/>

<owl:Class rdf:ID="ElectronicResource"/>

<ElectronicResource rdf:ID="ElectronicResource_Harry">

<hasDevices rdf:resource="#MobilePhone"/>

</ElectronicResource>

<owl:DatatypeProperty rdf:ID="end">

<rdfs:domain rdf:resource="#Calendar"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="FinanceResource"/>

<owl:Class rdf:ID="GeneralInfo"/>

<GeneralInfo rdf:ID="GeneralInfo_Harry">

<hasUserID rdf:datatype="&xsd;string">1</hasUserID>

<hasUserName rdf:datatype="&xsd;string">Harry Yu</hasUserName>

</GeneralInfo>

<owl:Class rdf:ID="Goal"/>

<Goal rdf:ID="Goal_Harry">

<name rdf:datatype="&xsd;string">comunicated</name>

</Goal>

<Person rdf:ID="Harry">

<hasResource rdf:resource="#Resource_Harry"/>

<hasLocation rdf:resource="#Location_Harry"/>

<hasProfile rdf:resource="#Profile_Harry"/>

<involveIn rdf:resource="#Activity_Harry1"/>

</Person>

<owl:ObjectProperty rdf:ID="hasActivityLocation">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Location"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasAddress">

<rdfs:domain rdf:resource="#Profile"/>

159

<rdfs:range rdf:resource="#Address"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasCalendar">

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Calendar"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasContactDetail">

<rdfs:domain rdf:resource="#ContactInfo"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasContactInfo">

<rdfs:domain rdf:resource="#Profile"/>

<rdfs:range rdf:resource="#ContactInfo"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasContactWays">

<rdfs:domain rdf:resource="#ContactType"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Device"/>

<owl:Class rdf:about="#OnlineResource"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasDevices">

<rdfs:domain rdf:resource="#ElectronicResource"/>

<rdfs:range rdf:resource="#Device"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasElectronicRes">

<rdfs:domain rdf:resource="#Resource"/>

<rdfs:range rdf:resource="#ElectronicResource"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasFinanceRes">

<rdfs:domain rdf:resource="#Resource"/>

<rdfs:range rdf:resource="#FinanceResource"/>

</owl:ObjectProperty>

160

<owl:ObjectProperty rdf:ID="hasGeneralInfo">

<rdfs:domain rdf:resource="#Profile"/>

<rdfs:range rdf:resource="#GeneralInfo"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasGoal">

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Goal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasLanguage">

<rdfs:domain rdf:resource="#Profile"/>

<rdfs:range rdf:resource="#Language"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasLanguageLevel">

<rdfs:domain rdf:resource="#Language"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasLanguageName">

<rdfs:domain rdf:resource="#Language"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasLevel">

<rdfs:domain rdf:resource="#Status"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="hasLocation">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Location"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasLocationAddress">

<rdfs:domain rdf:resource="#Location"/>

<rdfs:range rdf:resource="#Address"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOnlineAccount">

<rdfs:domain rdf:resource="#OnlineResource"/>

<rdfs:range rdf:resource="#OnlineAccount"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOnlineFinanceAccount">

<rdfs:domain rdf:resource="#FinanceResource"/>

161

<rdfs:range rdf:resource="#OnlineAccount"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOnlineRes">

<rdfs:domain rdf:resource="#Resource"/>

<rdfs:range rdf:resource="#OnlineResource"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasOrganization">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Profile"/>

<rdfs:range rdf:resource="#Organization"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPhysicalRes">

<rdfs:domain rdf:resource="#Resource"/>

<rdfs:range rdf:resource="#PhysicalResource"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPrefer">

<rdfs:domain rdf:resource="#ContactInfo"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPreferWays">

<rdfs:domain rdf:resource="#PreferContactWay"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Device"/>

<owl:Class rdf:about="#OnlineResource"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasProfile">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Profile"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasResource">

<rdfs:domain rdf:resource="#Person"/>

162

<rdfs:range rdf:resource="#Resource"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasStatu">

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Status"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="hasUserID">

<rdfs:domain rdf:resource="#GeneralInfo"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hasUserName">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#GeneralInfo"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="involveIn">

<rdfs:domain rdf:resource="#Person"/>

<rdfs:range rdf:resource="#Activity"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Language"/>

<Language rdf:ID="Language_Harry1">

<hasLanguageName rdf:datatype="&xsd;string">English</hasLanguageName>

<hasLanguageLevel rdf:datatype="&xsd;string">3</hasLanguageLevel>

</Language>

<Language rdf:ID="Langue_Harry2">

<hasLanguageName rdf:datatype="&xsd;string"></hasLanguageName>

<hasLanguageLevel rdf:datatype="&xsd;string"></hasLanguageLevel>

</Language>

<owl:Class rdf:ID="Location"/>

<Location rdf:ID="Location_Harry">

<Coordinate2 rdf:datatype="&xsd;string">800</Coordinate2>

<Coordinate1 rdf:datatype="&xsd;string">500</Coordinate1>

<hasLocationAddress rdf:resource="#UK"/>

</Location>

<Device rdf:ID="MobilePhone"/>

<owl:DatatypeProperty rdf:ID="name">

163

<rdfs:domain rdf:resource="#Goal"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Number">

<rdfs:domain rdf:resource="#OnlineAccount"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="OnlineAccount"/>

<OnlineAccount rdf:ID="OnlineCommunication_Harry">

<OnlineStatu rdf:datatype="&xsd;string"></OnlineStatu>

<Type rdf:datatype="&xsd;string">Email</Type>

<Number rdf:datatype="&xsd;string"></Number>

</OnlineAccount>

<OnlineResource rdf:ID="OnlineRes_Harry"/>

<owl:Class rdf:ID="OnlineResource"/>

<owl:DatatypeProperty rdf:ID="OnlineStatu">

<rdfs:domain rdf:resource="#OnlineAccount"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Organization"/>

<owl:Class rdf:ID="Person"/>

<owl:Class rdf:ID="PhysicalResource"/>

<PhysicalResource rdf:ID="PhysicalResource_harry"/>

<PreferContactWay rdf:ID="preferContact_Harry">

<hasPreferWays rdf:resource="#MobilePhone"/>

</PreferContactWay>

<owl:Class rdf:ID="PreferContactWay"/>

<owl:Class rdf:ID="Profile"/>

<Profile rdf:ID="Profile_Harry">

<hasContactInfo rdf:resource="#ContactInfo_Harry"/>

<hasGeneralInfo rdf:resource="#GeneralInfo_Harry"/>

<hasLanguage rdf:resource="#Language_Harry1"/>

<hasLanguage rdf:resource="#Langue_Harry2"/>

<hasAddress rdf:resource="#UK"/>

<hasOrganization rdf:resource="#UniversityOfLeicester"/>

</Profile>

164

<owl:ObjectProperty rdf:ID="requireResources">

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Resource"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Resource"/>

<Resource rdf:ID="Resource_Harry">

<hasPhysicalRes rdf:resource="#PhysicalResource_harry"/>

<hasElectronicRes rdf:resource="#ElectronicResource_Harry"/>

<hasOnlineRes rdf:resource="#OnlineRes_Harry"/>

<hasFinanceRes rdf:resource="#Visa"/>

</Resource>

<owl:DatatypeProperty rdf:ID="start">

<rdfs:domain rdf:resource="#Calendar"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="Status"/>

<Status rdf:ID="Status_Harry">

<hasLevel rdf:datatype="&xsd;string">Normal</hasLevel>

</Status>

<owl:DatatypeProperty rdf:ID="Type">

<rdfs:domain rdf:resource="#OnlineAccount"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<Address rdf:ID="UK"/>

<Organization rdf:ID="UniversityOfLeicester"/>

<FinanceResource rdf:ID="Visa"/>

</rdf:RDF>

Bibliography

[ACKM04] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services

Concepts, Architectures and Applications. Springer Book, 2004.

[AMM07] E. Al-Masri and Q. H. Mahmoud. Discovering the best web

service. In WWW ’07: Proceedings of the 16th international

conference on World Wide Web, pages 1257–1258. ACM, 2007.

[BBB01] C. Boutilier, F. Bacchus, and R.I. Brafman. Ucp-networks: A di-

rected graphical representation of conditional utilities. In Jack S.

Breese and Daphne Koller, editors, UAI, pages 56–64. Morgan

Kaufmann, 2001.

[BCM+08] F. Baader, D. Calavanese, D.L. McGuinness, D. Nardi, and P.F.

Patel-Schneider. The Description Logic Handbook, 2nd Edition.

Cambridge University Press, 2008.

[BDS06] R.I. Brafman, C. Domshlak, and S.E. Shimony. On graphical

modeling of preference and importance. In J. Artif. Intell. Res.

(JAIR), volume 25, pages 389–424, 2006.

[CF97] C. Carlsson and R. Fullér. OWA operators for decision support.

in Proceedings of EUFIT’97 Conference, Vol. II, pages 1539–

1544, 1997.

165

BIBLIOGRAPHY 166

[CIJ+00] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. C. Shan.

Adptive and Dynamic Service Compostion in eFlow. Proceedings

of the 12th International Conference on Advanced Information

Systems Engineering, pages 13-31, LNCS volume 1789, 2000.

[CKL05] S. Cuddy, M. Katchabaw, and H. Lutfiyya. Context-aware ser-

vice selection based on dynamic and static service attributes. In

Proceedings of IEEE International Conference on Wireless And

Mobile Computing, Networking And Communications, volume 4,

pages 13–20. IEEE, 2005.

[Cor07] Microsoft Corporation. Windows Workflow Foundation.

http://netfx3.com/content/WFHome.aspx, 2007.

[CPEV05] G. Canfora, M. D. PentaRaffaele, R. Esposito, and M. L Villani.

An approach for QoS-aware service composition based on genetic

algorithms. Proceedings of the 2005 conference on Genetic and

evolutionary computation, pages 1069-1075, 2005.

[DA99] A.K. Dey and G.D. Abowd. Towards a Better Understanding of

Context and Context-Awareness. Proceedings of the 1st inter-

national symposium on Handheld and Ubiquitous Computing,

pages 304-307. LNCS Volum 1707, 1999.

[DCG+06] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta,

B. Norton, and C. Pedrinaci. IRS-III: A broker-based approach to

semantic Web services. Book of The Semantic Web - ISWC’06,

pages 201-214. LNCS Volume 4273/2006, 2006.

[DFvH03] J. Davies, D. Fensel, and F. van Harmelen. Towards The Seman-

tic Web Ontology-driven Knowledge Management. John Wiley

and Sons, LTD, 2003.

BIBLIOGRAPHY 167

[DLP] A. Dan, H. Ludwig, and G. Pacifici. Web Service Differentiation

with Service Level Agreements. White paper, IBM Corporation.

[Duj] J.J. Dujmovic. A method for evaluation and selection of com-

plex hardware and software systems. In Procedings of 22nd In-

ternational Conference for the Resource Management and Per-

fromance Evaluation of Enterprise Computer Systems.

[Duj73] J.J. Dujmovic. Mixed Averaging by Levels (MAL)– A System and

Computer Evaluation Method. Proceedings of the Informatica

Conference, paper d28, Bled, Yugoslavia, 1973.

[Duj75] J.J. Dujmovic. Extended Continuous Logic and the Theory of

Complex Criteria. Journal of the University of Begrade, EE

Dept., Series Mathematics and Physics, No. 537, pages 97–216,

1975.

[Duj07] J.J. Dujmovic. Continuous Preference Logic for System Evalua-

tion. IEEE Transactions on Fuzzy System, vol. 15, No. 6, 2007.

[Erl04] T. Erl. Service-oriented architecture : a field guide to integrating

XML and Web services. Prentice Hall PTR, 2004.

[ESB07] A-R. El-Sayed and J.P. Black. Semantic-Based Context-Aware

Service Discovery in Pervasive-Computing Environments. in

Proc. of IEEE Workshop on Service Integration in Pervasive

Environments (SIPE), In conjunction with IEEE International

Conference on Pervasive Services (ICPS), pages 556-557, IEEE,

2007.

[FR94] J.C. Fodor and M. Roubens. Modelling and Multicriteria Deci-

sion Support. Kluwer, Dordrecht, 1994.

BIBLIOGRAPHY 168

[GGD07] S. Galizia, A. Gugliotta, and J. Domingue. A trust based

methodology for web service selection. In Proceedings of Interna-

tional Conference on Semantic Computing, pages 193–200, 2007.

[Gro04] Object Management Group. Common Object Request Broker

Architecture: Core Specification. Object Management Group,

http://www.omg.org/docs/formal/04-03-12.pdf, 2004.

[Gro05] (WSMO) Working Group. Web service modeling ontol-

ogy (wsmo) - an ontology for semantic web services, [on-

line], http://www.w3.org/2005/04/fsws/submissions/1/wsmo-

position-paper.html, 2005.

[HPSMW08] I. Horrocks, P.F. Patel-Schneider, D.L. McGuinness, and C.A.

Welty. The Description Logic Handbook: Chapter 14, OWL:

A Description-Logic-Based Ontology Language for the Semantic

Web, 2nd Edition, pages 458–486. Cambridge University Press,

2008.

[HTW04] A. Helsinger, M. Thome, and T. Wright. Cougaar: A scalable,

distribute multi-agent architecture. In Proceedings of IEEE In-

ternational Conference on Systems, Man and Cybernetics, pages

1910–1917. IEEE, 2004.

[III70] J.R. Miller III. Professional Decision-Making. Praeger Publish-

ers, 1970.

[JS07] H. Janicke and M. Solanki. Policy-driven service discovery. In

Proceedings of the 2nd European Young Researchers Workshop

on Service Oriented Computing, pages 56–62, 2007.

[KBS04] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-

Oriented Architecture Best Practices. Prentice Hall PTR, 2004.

BIBLIOGRAPHY 169

[KEKW04] N. Klimin, W. Enkelmann, H. Karl, and A. Wolisz. A Hybrid

Approach for Location-based Service Discovery in Vehicular Ad

Hoc Networks. citeseer.ist.psu.edu/klimin04hybrid.html, 2004.

[KHC+05] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and

A. Buchmann. Extending BPEL for Run Time Adaptability. Pro-

ceedings of the 9th IEEE International EDOC Enterprise Com-

puting Conference, pages 15-26, 2005.

[LASG07] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm.

Preference-based selection of highly configurable web services.

In WWW ’07: Proceedings of the 16th international conference

on World Wide Web, pages 1013–1022. ACM, 2007.

[LH03] C. Lee and S. Helal. Context attributes: An approach to enable

context-awareness for service discovery. In Proceedings of 2003

Symposium on Applications and the Internet, pages 22–30. IEEE

Computer Society, 2003.

[LNZ04] Y. Liu, A.H. Ngu, and L.Z. Zeng. Qos computation and policing

in dynamic web service selection. In WWW Alt. ’04: Proceed-

ings of the 13th international World Wide Web conference on

Alternate track papers & posters, pages 66–73. ACM, 2004.

[Mar98] J.L. Marichal. Aggregation operations for multicriteria decision

aid. PhD. Thesis, Institute of Mathematics, University of Liège,

Belgium, 1998.

[MBH+04] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-

mott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,

T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. OWL-S: Se-

mantic Markup for Web Services. W3C Member Submission,

http://www.w3.org/Submission/OWL-S, 2004.

BIBLIOGRAPHY 170

[MD01] T. P. Moran and P. Dourish. Introduction to this special issue

on context-aware computing. Special Issue of Human-Computer

Interaction, 16:1–8, 2001.

[MS04] E.M. Maximilien and M.P. Singh. A framework and ontology

for dynamic web services selection. IEEE Internet Computing,

8(5):84–93, 2004.

[MT05] U.S. Manikrao and T.V.Prabhakar. Dynamic selection of web

services with recommendation system. In (NWESP’05) Proceed-

ings of the International Conference on Next Generation Web

Services Practices, page 117. IEEE Computer Society, 2005.

[NP05] R. Neto and M. Pimentel. Toward a domain-independent se-

mantic model for context-aware computing. In Proceedings of

the Third Latin American Web Congress, IEEE Computer Soci-

ety pages 10-18, 2005.

[OR02] L.A. Olsina and G. Rossi. Measuring Web application quality

with WebQEM. IEEE Multimedia, 9(4), pages20–29, 2002.

[Org04a] OASIS Orgnization. UDDI Version 3 Specification. OASIS Stan-

dard, 2004.

[Org04b] W3C Orgnization. OWL Web Ontology Language Overview.

W3C Standard, 2004.

[Org07a] Oasis Organization. Web Services Business Process Exe-

cution Language Version 2.0 - Primer. http://docs.oasis-

open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf, 2007.

[Org07b] W3C Orgnization. SOAP Version 1.2. W3C Standard, 2007.

[Org07c] W3C Orgnization. Web Services Description Language (WSDL)

Version 2.0. W3C Standard, 2007.

BIBLIOGRAPHY 171

[oTOG06] SOA Working Group of The Open Group. Service-Oriented Ar-

chitecture (SOA):Definition of SOA. Open Group SOA Defini-

tion, 2006.

[Pac04] Hewlett Packard. Cooltown Project.

http://www.cooltown.com/cooltown/, 2004.

[PBMW98] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-

ank citation ranking: Bringing order to the web. Technical

report, Stanford Digital Library Technologies Project, 1998.

http://citeseer.ist.psu.edu/page98pagerank.html.

[PS06] E. Prud’hommeaux and A. Seaborne. Sparql query language for

rdf, [online], http://www.w3.org/tr/rdf-sparql-query/, 2006.

[RDN05] M.A. Razzaque, Simon Dobson, and Paddy Nixon. Categorisa-

tion and modelling of quality in context information. In Proceed-

ings of the IJCAI 2005 Workshop on AI and Autonomic Com-

munications, pages 1–10. Springer, 2005.

[Red97] F. E. Redmond. DCOM: Microsoft Distributed Component Ob-

ject Model. IDG Books Worlwide, 1997.

[RMYT09] S. Reiff-Marganiec, H. Q. Yu, and M. Tilly. Service selection

based on non-functional properties. In Proceedings of Non Func-

tional Properties and Service Level Agreements in Service Ori-

ented Computing Workshop NFPSLA-ICSOC’07, pages 128–138.

Springer Lecture Notes in Computer Science, 2009.

[RPC+04] E. Rukzio, G. N. Prezerakos, G. Cortese, E. Koutsoloukas, and

S. Kapellaki. Context for Simplicity: A Basis for Context-aware

Systems Based on the 3GPP Generic User Profile. In Proceed-

ings of International Conference on Computational Intelligence,

pages 17-19, 2004.

BIBLIOGRAPHY 172

[RT06] O. Riva and S. Toivonen. A hybrid model of context-aware ser-

vice provisioning implemented on smart phones. ACS/IEEE In-

ternational Conference on Pervasive Services, (4):47 – 56, 2006.

[SAW94] B. Schilit, N. Adams, and R. Want. Context-aware comput-

ing applications. In Proceedings of the IEEE Workshop on Mo-

bile Computing Systems and Applications, pages 85–90, Santa

Cruz,CA, USA, 1994. IEEE Computer Society.

[SBS+07] C. Schropfer, M. Binshtok, S.E. Shimony, A. Dayan, R. Brafman,

P. Offermann, and O. Holschke. Introducing preferences over

nfps into service selection in soa. In Proceedings of Non Func-

tional Properties and Service Level Agreements in Service Ori-

ented Computing Workshop 2007, pages 68–79. Springer, 2007.

[SDB+87] Y.W. Su, J.J. Dujmovic, D.S. Batory, S.B. Navathe, and R. El-

nicki. A cost-Benefit Decision Model: Analysis, Comparison, and

Selection of Data Management Systems. ACM Transactions on

Database Systems, Vol. 12, No. 3, pages 472–520, 1987.

[SJS05] Y.J. Seo, H.Y. Jeong, and Y.J. Song. A study on web services

selection method based on the negotiation through quality bro-

ker: A maut-based approach. In Book Embedded Software and

Systems, pages 65–73, 2005.

[SM03] J.M. Fenández Salido and S. Murakami. Extending Yager’s or-

ness concept for the OWA aggregators to other mean operators.

Fuzzy Sets and Systems, Elsevier B.V. 139, pages 515–542, 2003.

[SVC+03] I. Sygkouna, S. Vrontis, M. Chantzara, M. Anagnostou, and

E. Sykas. Context-Aware Services Provisioning on Top of Active

Technologies. Book Series Lecture Notes in Computer Science

Publisher Springer Berlin / Heidelberg ISSN 0302-9743, Volume

BIBLIOGRAPHY 173

Volume 2881/2003 Book Mobile Agents for Telecommunication

Applications, Category Service Management - Service Provision-

ing pages 67-76 Subject Collection Computer Science, 2003.

[Tom07] I. R. Toma. On describing and ranking services based on non-

functional properties. In Proceedings of the Third International

Conference on Next Generation Web Services Practices, pages

61–66. IEEE Computer Society, 2007.

[TRMY07] M. Tilly, S. Reiff-Marganiec, and H.Q. Yu. Design

and Implemetationn of monitoring and aggregation mech-

anisms for context-based services - Version 1. inCon-

text project deviverables, D3.2 V1, 2007, http://www.in-

context.eu/page.asp?PageRef=10, 2007.

[TYRM+08] M. Tilly, H.Q. Yu, S. Reiff-Marganiec, D. Schall, and S. Peray.

Design and Implemetationn of monitoring and aggregation

mechanisms for context-based services - Version 2. inCon-

text project deviverables, D3.2 V2, 2008, http://www.in-

context.eu/page.asp?PageRef=10, 2008.

[UF06] European Union and FP6 Framework. inContext (Interac-

tion and Context Based Technologies for Collaborative Teams)

project. IST IST-2006-034718, 2006.

[Vuk07] M. Vukovic. Context aware service composition. Technical Re-

port, Computer Laboratory, University of Cambridge,UCAM-

CL-TR-700 ISSN 1476-2986, 2007.

[WV07] Y. Wang and J. Vassileva. Vassileva: Toward trust

and reputation based web service selection: A survey,

[online], http://bistrica.usask.ca/madmuc/papers/yao-julita-ws-

mas-survey.pdf, 2007.

BIBLIOGRAPHY 174

[WVKT] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A qos-

aware selection model for semantic web services. In Proceedings

of Service-Oriented Computing ICSOC 2006, pages 390–401.

Springer LNCS.

[Yag88] R.R. Yager. On ordered weighted averaging aggregation opera-

tors in multi-criteria decision making. IEEE Transactions on

Systems, Man and Cybernetics 18, pages 183–190, 1988.

[YHHRM07] H.Q. Yu, Y. Hong, R. Heckel, and S. Reiff-Marganiec. Context-

sensitive Team Formation: Towards Model- Based Context Rea-

soning and Update. Sixth International and Interdisciplinary

Conference on Modeling and Using Context, Doctorial Consor-

tium, pages 115-129, 2007.

[YL05] T. Yu and K. Lin. Service Selection Algorithms for Composing

Complex Services with Multiple QoS Constrains. ICSOC2005,

LNCS, vol: 3826, pages 130-143, 2005.

[YRM08a] H. Q. Yu and S. Reiff-Marganiec. A method for automated web

service selection. In 2008 IEEE International Conference on Ser-

vices Computing, volume 0, pages 513–520, Los Alamitos, CA,

USA, 2008. IEEE Computer Society.

[YRM08b] H.Q. Yu and S. Reiff-Marganiec. Non-functional property based

service selection: A survey and classification of approaches.

In Proceedings of Non-Functional Properties and Service Level

Agreements in Service Oriented Computing Workshop co-located

with The 6th IEEE European Conference on Web Services,

Dublin, Ireland, 2008. Sun SITE Central Europe.

[YRM09a] H.Q. Yu and S. Reiff-Marganiec. Automated context-aware ser-

vice selection for collaborative systems. In Proceedings of The

BIBLIOGRAPHY 175

21st International Conference on Advanced Information Sys-

tems, pages 193–200. Springer Lecture Notes in Computer Sci-

ence, 2009.

[YRM09b] H.Q. Yu and S. Reiff-Marganiec. A backwards composition con-

text based service selection approach for service composition. In

IEEE International Conference on Services Computing (SCC’09.

IEEE, 2009.

[YRMT08] H.Q. Yu, S. Reiff-Marganiec, and M. Tilly. Composition context

for web services selection. In IEEE International Conference

on Web Service, Work In Progress Track, pages 304–307, Los

Alamitos, CA, USA, 2008. IEEE Computer Society.

[ZBN+05] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam,

and H. Chang. QoS-aware middleware for web services composi-

tion. IEEE Transactions on Software Engineering, pages 311-327,

2005.

[ZMN05] F. Zhu, M. W. Mutka, and L. M. Ni. Service discovery in per-

vasive computing environments. IEEE Pervasive Computing,

4(4):81–90, 2005.

