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ABSTRACT 

 

 

 
 

Business to Business integration is enhanced by Workflow structures, which allow for 

aggregating web services as interconnected business tasks to achieve a business outcome. 

Business processes naturally involve long running activities, and require transactional 

behavior across them addressed through general management, failure handling and 

compensation mechanisms. Loose coupling and the asynchronous nature of Web Services 

make an LRT subject to a wider range of communication failures. Two basic 

requirements of transaction management models are reliability and consistency despite 

failures. This research presents a framework to provide autonomous handling of long 

running transactions, based on dependencies which are derived from the workflow. The 

framework presents a solution for forward recovery from errors and compensations 

automatically applied to executing instances of workflows. The failure handling 

mechanism is based on the propagation of failures through a recursive hierarchical 

structure of transaction components (nodes and execution paths). The management 

system of transactions (COMPMOD) is implemented as a reactive system controller, 

where system components change their states based on rules in response to triggering of 

execution events. One practical feature of the model is the distinction of vital and non-

vital components, allowing the process designer to express the cruciality of activities in 

the workflow with respect to the business logic. A novel feature of this research is that 

the approach permits the workflow designer to specify additional compensation 

dependencies which will be enforced. A notable feature is the extensibility of the model 

that is eased by the simple and declarative based formalism. In our approach, the main 

concern is the provision of flexible and reliable underlying control flow mechanisms 

supported by management policies. The main idea for incorporating policies is to manage 

the static structure of the workflow, as well as handling arbitrary failure and 

compensation events. Thus, we introduce new techniques and architectures to support 

enterprise integration solutions that support the dynamics of business needs.  
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Chapter 1 

Introduction 

 

 

 

 

 

 

 

 

1.1 Motivation  

 

Two widely demanding trends, both in web technologies and in the business world, drive 

and motivate the research in this thesis. In the business world, the trend is towards the 

collaboration of companies and enterprises as networked organizations. This is 

accomplished by adopting collaborative mechanisms of business processes integration 

within a large community of business partners. On the other hand, web technologies are 

transforming the web from an infrastructure for sharing information to an infrastructure 

where networked organizations can collaborate and integrate their business interests.  

 

Essentially, Service Oriented Computing (SOC) has had  a significant impact as the 

computing paradigm to support collaborative Business to Business (B2B) integration 
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over the internet (Papazoglou and Georgakopoulos, 2003).  Service Oriented 

Architectures (SOA) forms a foundation for rapid application integration and automated 

business processes, ideally through web service implementations (Newcomer and 

Lomow, 2004).   

 

In this chapter, we highlight the main challenges associated with the web service based 

business process modeling and management. These challenges enact modeling 

requirements that must be satisfied in order to achieve one general common objective: 

correctness and reliability of the management model. We discuss these requirements and 

state our research questions, research statement, model overview and assumptions. 

 

1.2 Research Challenges 

 

Web services are “self-describing, open components that support rapid, low-cost 

composition of applications” (Papazoglou and Georgakopoulos, 2003). Web services are 

offered by service providers (business organizations) by implementing services, together 

with their description and associated technical and business support. A B2B process can 

then be composed by aggregating web services to form a composite service, in order to 

achieve a required business outcome. Autonomy, loose coupling, the heterogeneous 

nature of web services and human interaction for some tasks makes a business process 

into a long running one.   
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A composite service would typically entail a complex structure of interrelated activities 

that would exhibit a high degree of concurrency and interrelationship. Therefore its 

composition requires flexibility in terms of the construction of the overall business 

process. Workflow systems integrate, automate and manage B2Bs and enable business 

processes to fulfill their business goals through flexible representations of the control 

flow of their tasks.   A service-based workflow process is a long running workflow, 

composed of web services that relate to each other through workflow constructs such as 

split and join, to allow for sequencing, parallelism or choices in the control flow. A 

workflow management system is required to coordinate the sequence of service 

invocations within a process, to manage control flows and data flows between web 

services, and to ensure execution of the process as a reliable transaction unit (Yan et al., 

2005). 

 

One of the important aspects of management of B2B long running processes is to ensure 

their reliability, consistent outcomes and the correct execution of the composite services. 

In particular, in case of failure of some of the component services, it is required that the 

business task remains “stable”. Autonomy and loose coupling of web services makes a 

composite service more prone to failure than other business processing environments, in 

that the failure of services can happen at any time, with a higher probability, and 

therefore an efficient failure handling mechanism is required. In addition, a collaborative 

B2B process usually involves different parties, and spans different organizations; thus, 

correct and reliable execution is an important aspect of business integration which 
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guarantees that all parties involved in the business process always maintain their systems 

consistently, especially in the case of failure occurrences.  

Reliability, failure handling and correct execution behavior constitute the main properties 

on which transaction management models are based and where these properties are 

typically inherent within their execution semantics. Transaction management has been 

widely exploited in the literature as a mean of correct execution of database processes 

and has resulted in a plethora of proposed transaction models. The ACID correctness 

properties (Gray, 1981)(Haerder and Reuter, 1983, Özsu and Valduriez, 1991) establish 

the main properties on which other database transaction models have built their 

correctness.  

 

In essence, an ACID transaction is (a) Atomic (all-or-nothing), by which  all operations 

of a transaction are expected to either successfully commit or if the transaction fails 

(aborts), then all its effects are undone (rolled back), (b) Consistent: the transaction 

moves the state of the system from one consistent state to another consistent state, i.e. 

requires the transaction to be correct, (c) Isolated: this  requires that correct concurrent 

transactions execute as if they are sequenced, and (d) Durable: this requires that once a 

transaction is committed then its outcome is made permanent in spite of future failures. 

To achieve overall correctness of transactions, different concurrency and recovery 

protocols have been proposed to ensure atomicity. These protocols mainly depend on the 

exclusive locking of shared resources for the duration of the transaction, e.g. the two 

phase locking protocol in (Moss, 1982).  
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As a result, in traditional database transactions, it is a requirement for transactions to 

enforce ACID properties, so as to ensure that only consistent state changes take place in 

the presence of concurrent access or failures. Even in complex business applications, 

ACID properties ensured that consistency of state is preserved. It is a very useful fault 

tolerance technique when multiple or remote resources are shared. The atomicity property 

ensures a reliable fault handling mechanism, but ACID transactions are regarded as 

“short-lived” entities, running on tightly coupled systems.  

 

Applying ACID properties in long processing environments will oblige locking resources 

for long periods of time, which is inappropriate. Atomicity in long running transactions is 

not a straightforward notion, since it is not always possible to semantically undo the 

effects of all tasks in the transaction, due to the complexity of the transaction model and 

the nature of the business tasks – tasks can mean anything from a database update 

operation to sending email to a client or shipping goods. Instead, ACID properties are 

relaxed to suit long running transaction requirements where the atomicity requirement is 

replaced with the concept of Compensation. Compensation in long running transactions 

defines the behavior of the transactions in the case of occurrence of failures or 

cancellations. Failures need to be handled correctly, to ensure overall system consistency 

and data integrity. 

 

Compensation was first introduced in the saga model (Garcia-Molina and Salem, 1987) 

where a long running transaction consists of a set of ACID transactions, the saga itself is 

not ACID. Failure atomicity is guaranteed for sub transactions such that when one fails, it 
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is aborted and retried through forward recovery. If the saga fails, it is aborted, and all 

committed sub transactions are compensated in backward order by running compensators 

associated with each sub transaction.  

 

The compensation concept has been adopted in long running transaction models as a 

mean of recovery and reliability in the case of failure occurrences; primarily to relax 

atomicity of ACID transactions. Compensation tends to undo effects of previously 

completed tasks. Therefore, if an LRT failed, all previously completed activities are 

compensated by running their compensators. Generally, LRT management models apply 

compensation of activities using two standard methods:  (1) Forward order: when a 

recoverable failure occurs, a subset of LRT activities are compensated in the reverse 

order of their completion order until a safe point is reached and then the same activities 

are retried and (2) Backward order: in the case of irrecoverable failures, the LRT fails and 

all previously completed activities are compensated in reverse order of their completions: 

that is, reverse order in case of sequenced tasks and parallel or any order in case of 

concurrent tasks. However, whatever the order by which compensations are executed, 

this order is always enforced by the structure of the LRT model being applied, and results 

in a long running compensating transaction.  

In real B2B applications, it is the case that business process logic requires that 

compensation logic diverges from the standard compensation order that is obliged by the 

LRT structure by freely incorporating compensation logic into business logic. The 

restricted backward recovery mechanism makes implementing an arbitrary order for 
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compensations not a straight forward process. Furthermore, tasks that are not 

compensationally independent may execute their compensations in parallel. 

A motivating example is the following e-procurement workflow case study ‘Place Order’ 

workflow: 

 

The dashed arrows represent compensation logic 

Figure 1.1 Place Order Business Process Scenario 

The business\compensation logic in this e-procurement case study states as follows:  if 

the transaction is compensated, then it has to be guaranteed that the compensators of 

UpdateCustomerAccount and ReserveGoods can be executed only after the Payment has 

completed its compensation. With the default backward compensation mechanisms, if 

UpdateCustomerAccount was completed after Payment has been completed, then, 

UpdateCustomerAccount will be compensated before Payment has been refunded, or 

they could both compensate concurrently which contradicts the compensation logic of 

this specific LRT. Therefore, and in the context of business process logic, we view an 

LRT as two transactions represented by one schema: the transaction in its normal 

intended form, and a compensating transaction. 
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Collaborative B2B business applications normally include tasks running concurrently as 

part of the overall transaction, which requires consistent and correct modeling of their 

behavior. Two important issues regarding concurrency execution are (a) the reliable 

modeling of the synchronization of concurrent tasks and (b) the prevention of possible 

deadlocks. Concurrency modeling is usually influenced by the underlying paradigm for 

representing transactions and the protocols used for the interactions between transaction 

tasks. The more flexible the transaction representation paradigm is, the more challenging 

it becomes to define a correct behavior for concurrency.  

 

The increasing availability of business processes is an important feature to the practicality 

of a proposed model. This could be accomplished in many ways, but more importantly, 

by providing compensation techniques to allow for tolerable failures to be recovered 

without interrupting the normal processing path of the business process. Availability can 

be further increased by distinguishing between crucial tasks that must complete 

successfully and those tasks that are less crucial and their failure is tolerable and will not 

require any further actions.   

 

Externalizing management aspects from actual execution aspects of process tasks 

increase the practicality of business process modeling. First, operational semantics can be 

captured at a higher abstract level than the actual executing tasks, allowing for 

implementing different methods for recovery without being tied to the underlying 

structure of the process. Second, it is a good way to provide the management model with 

extensibility of its operational semantics by adding new semantics. Event-Condition-
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Action rules are a natural candidate to fulfill management externalization and for 

implementing this kind of functionality.  

1.3 LRT Modeling Requirements  

 

As an essential part of conducting this research, we have defined a set of LRT modelling 

requirements.  These requirements are derived from the literature provided on LRT 

modelling approaches as well as from analysis of a number of example business 

processes. 

 

Principally, our Long Running Transaction is: 

1- Web service based: tasks in the LRT are web services that are composited to 

achieve a business outcome. 

2- Transactional: the modeling of LRT exhibits transactional semantics. 

3- A workflow: the LRT is represented as a workflow schema with arbitrary levels 

of nested tasks.   

4- A Reactive Management Model: it is executed in an environment where changes 

are detected as events and automatically responded to by applying appropriate 

execution logic through management policies.  

From a web-based business process perspective, LRT modeling imposes the following 

requirements (Aguilar-Saven, 2004; Papazoglou, 2003; Peltz, 2003):  

REQ. 1 Transactional support to guarantee consistent outcome for participating parties. 

REQ. 2 Flexible representation of complex web service compositions that allows 

nesting and concurrency which naturally occurs in business processes.   
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REQ. 3 Recovery protocols to undo completed tasks and to choose another acceptable 

execution path (Dalal et al., 2003). 

REQ. 4 Composition of web services must be supported with failure handling 

mechanisms that allow some failures to be tolerable and/or compensable while 

others could fail the business process from successfully completing depending 

on the crucially of the task to the overall outcome of the business process.   

 

One of the main differences between a traditional transactional model and a loosely 

coupled LRT is that the former is data-centric while the latter is activity-centric or more 

generally, process-aware (Reichert & Weber, 2012). Therefore, from the transactional 

perspective, LRT modeling imposes the following requirements (Colombo & Pace, 2012; 

Dalal et al., 2003; Dayal, Hsu, & Ladin, 1991): 

REQ. 5 Transactions support nesting and concurrent execution, but they are not 

flexible enough to capture the highly collaborative and concurrent nature of 

real B2B processes and hence more flexibility in representation is required as 

such to allow for selective and alternative choices.  

REQ. 6 Transactions’ recovery is based on failure handling mechanisms that are 

inherent in their semantics which delimits flexibility of expressing 

compensation logic of the business process. Therefore, the failure handling 

mechanisms should be separated from execution mechanisms, and both should 

operate in tandem to achieve correct recovery mechanisms. 

From the workflow perspective, LRT modeling imposes the following requirements:  
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REQ. 7 Control flow of workflows should be supported by transactional semantics in 

order to achieve a reliable control flow (Bhiri et al., 2006a). 

REQ. 8 Synchronization of concurrent tasks should be formally defined to resolve 

potential operational ambiguities and potential deadlock situations (Russell et 

al., 2006). 

REQ. 9 Extensibility of a model’s operational semantics is an important requirement of 

modeling which facilitates additions of new control flow constructs to comply 

with web service composition requirements and to confirm the practicability of 

the model. 

REQ. 10 Transaction support for workflows requires well-formed infrastructure and 

well-formed relationships between the correlated tasks and hence transactional 

workflows require well-formed structure applied to the workflow schemas 

(Kiepuszewski, Hofstede, & Bussler, 2000).   

From the compensation perspective, LRT modeling imposes the following requirements 

(Colombo & Pace, 2012; Greenfield et al., 2003): 

REQ. 11 Separation of failure handling and compensation handling semantics.  

REQ. 12 A mechanism for applying partial compensations that is integrated with the 

failure handling semantics as part of the failure recovery process. If failure 

handling requires compensation applied to completed tasks, this can be done 

without interrupting the execution of the transaction, i.e. tasks that are not 

interrupted with failures, will continue their executions. 

REQ. 13 Flexibility in incorporating compensation logic into business logic. 

Compensation semantics should not be enforced only by the structure of the 
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REQ. 14 business process composition; instead, the LRT designer should be assisted by 

a correct mechanism for freely expressing the customized compensation 

relationship between transactions tasks without violating the integrity of the 

overall process. These should apply in the case of global failure of the LRT.  

From the correctness and reliability of execution perspective, LRT modeling imposes 

the following requirements (Chrysanthis & Ramamritham, 1990; Colombo & Pace, 

2012): 

REQ. 15 Providing the means of validating the correctness of execution semantics. 

REQ. 16 The transactional relationships between interrelated tasks are best being 

formalized in a way to make reasoning about their correctness a straight 

forward task, i.e. using the same formalism for both, modeling and correctness. 

This will also increase the extensibility of the model. 

From the reactive management perspective, LRT modeling imposes the following 

requirements (Papamarkos et al., 2006; Wieringa, 2003): 

REQ. 17 Execution behavior of LRT components need to be observed as events, such 

that when a component completes, fails or compensates, an event is fired. 

REQ. 18 Execution semantics of the LRT need to be implemented as rules (policies) to 

automatically execute business logic. 
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1.4 Modeling Objectives 

 

Our modeling objectives are driven by the modeling requirements discussed in the 

previous section, and motivated towards the following aims:  

1- Correct control flow of a long running transaction, both in its normal processing 

path and its compensation processing path.  

2- Flexibility in representation of execution semantics.  

3- Flexibility in compensation composition. 

4- Reliability of execution by correct handling of failures and compensations. 

5- Automation of management mechanism as step towards a self-healing transaction 

model.   

6- Formal modeling of execution behavior that provides the means of reasoning 

about correctness of the behavior. 

 

1.5 Research Questions and Statement 

 

The modeling requirements and objectives listed in the previous sections raise the 

following research questions: 

Q1- How can the structure of the business process be specified with complex and 

arbitrary levels of nesting? 

Q2- How can the control flow semantics of transactions with complex and nested 

structure be formally captured? How can the same formalism be used to capture 

failure and compensation semantics?  
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Q3- What failure mechanism best reflects the propagation of failures through nested 

structures?  

Q4- What formalism is ideal for the flexible incorporation of compensation logic into 

business logic? 

Q5- What management mechanism would be ideal for automating the control flow 

process? 

Q6- How can the control flow formalism be used for reasoning about correctness of 

control flow, concurrency, failure handling and compensation semantics? 

 

Thesis Statement 

In this research, we focus on flexible control flow of web-based workflow modeling with 

long running transaction support to deliver reliable execution behavior of business 

processes. Reliability is guaranteed through flexible and autonomous failure handling 

and comprehensive compensation handling mechanisms.  

 

1.6 Contribution 

 

Our contribution is a fourfold: 

 

Contribution 1: Fine-grained specification model for arbitrary nested transactions. 

We specify our LRT model as a hierarchical tree structure that provides a recursive 

nature for propagating execution events across and along hierarchy levels. Essential to 
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this fine-grained structure, we explicitly capture the semantics of execution paths and 

specify them as autonomous components of the LRT. By providing this, we are able to 

enrich the operational semantics of concurrency with flexibility and extensibility.  

 

Contribution 2: Autonomous Failure Handling Mechanism 

An essential propagation policy states that “Failure of a vital atomic node, fails its 

superior”. Based on this policy, we build an autonomous failure handling mechanism that 

propagates failures recursively through vital ancestors, if the failure event reaches the 

root of the hierarchy, the transaction fails. Basic to the failure handling mechanism, a 

downwards propagation of failures is applied to a failed concurrent scope, in order to 

cancel all its activated components. The failure handling mechanism is integrated with a 

partial compensation mechanism to apply partial recovery in the case of tolerable 

failures. 

 

Contribution 3: Compensation Composition Mechanism 

We regard compensation composition as being as important as service composition. 

Therefore, we provide business process designers with the underlying framework to 

freely specify the order in which compensation of tasks are required to be executed. This 

functionality is provided through the specification of compensation patterns that are 

mapped onto the workflow schema. The designer is allowed to specify compensation 

patterns on subsets of component services of an LRT. A compensation pattern then 

decides the order by which the specified services are compensated. Any services that are 

not involved in any compensation pattern are compensated concurrently. This will 
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increase the performance of the system in terms of time spent on the compensation 

process. We support reliable compensation compositions by validating such 

compositions, to avoid consistency violations. This implemented through the 

comprehensive compensation mechanism of COMPMOD.  

Contribution 4: Specification Extensibility  

One important feature of COMPMOD is its highly flexible extensibility, in the sense that 

the underpinning representation structure can be enriched with further concurrency, 

execution and compensation semantics.  

 

1.7 Model Overview 

 

The work presented proposes a reliable control flow management mechanism for 

sequencing and concurrency in web-based workflow transactions, such that tolerable 

failures are handled. A tolerable failure is a failure of a task to complete successfully but 

the failure is acceptable in the sense that it would not cause an interruption of the LRT’s 

execution nor cause a global failure of the transaction. Handling tolerable failures would 

typically involve partial compensation activities applied to subsets of tasks, but will not 

stop the transaction from completing its normal execution. In the case of intolerable 

failures, and when a consensus is reached about the failure of the LRT, a comprehensive 

compensation is applied to all previously succeeded tasks. The order of compensations 

can be customized on a subset or subsets of tasks. Tasks that are not part of a customized 

order can be compensated concurrently. Customized compensations mainly reflect the 

business and the compensation logic of the transaction.  
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Our approach for managing LRTs is based on a reactive system controller in event based 

architecture. Policies define the rules by which the controller acts. In general, an 

execution event is raised for a component to signal its readiness to perform an execution 

(activation or compensation), or to signal that an execution of a component has finished 

(completion or failure). The raised event is then assessed by management policies to 

reach a consensus as to the current state of the component and the next state of its 

correlated components.  

 

An LRT in COMPMOD is represented as an arbitrary nested WF transaction. The WF 

representation of the model imposes a hierarchical tree structure, where the root of the 

hierarchy represents the main execution path. The respective levels of the tree represent 

an alternating levels of nodes and execution paths, such that the superior of a path is its 

enclosing scope node and the superior of a node is its enclosing execution path.  This 

results in atomic nodes being the leaf nodes of the hierarchy tree. Each component in the 

hierarchy is directly correlated with its superior, inferior, and siblings in an encapsulated 

manner, such that a component can be indirectly correlated with another component if 

their superiors are correlated. As an example, nodes on concurrent paths are correlated, 

since their superiors are siblings.  

 

The encapsulated behavioral interrelationship between components is modeled by 

dependencies, and automated by policies. Behavioral dependencies and management 

policies both reflect the execution semantics of the model and complement each other.  
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The model allows for a separation between vital and non-vital components where a 

failure of a vital component has an impact on the cancellation of its correlated 

components, while failure of non-vital components is tolerated. Cancellations will invoke 

partial compensations to return to a place where an alternative  (if one exists) can be 

attempted without lasting side effects, and the failure of the LRT will lead to 

comprehensive compensation being applied to all composited nodes in the transaction. 

 

1.8 Thesis Structure  

 

The thesis is organized as follows: 

 Chapter 2: discusses the literature background of the thesis and the related work 

in the field. 

 Chapter 3: discusses the two modeling paradigms that we adopt in our workflow 

semantics; workflow patterns and transactional patterns and explains how we 

extend these models. 

 Chapter 4: describes the representation structure of the COMPMOD model, and 

introduces the concepts of execution events, reactive management and 

management policies. We will also state our model assumptions in this chapter.  

 Chapter 5: describes the execution semantics of the model and its formalism, and 

shows the management mechanism and the failure handling mechanism. 

 Chapter 6: describes the logic and formalism of compensation events and policies, 

and illustrates the partial and the comprehensive compensation mechanisms of 

COMPMOD. 
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 Chapter 7: provides a verification of COMPMOD in terms of the correctness of 

the proposed model and its extensibility feature. 

 Chapter 8: concludes the thesis and provides details of future work. 

 Bibliography 

 Appendix A and B lists a table for all dependencies and management policies of 

COMPMOD for easier referencing, through related discussions.  

 Appendix C: provides an assessment of the COMPMOD model based on the 

Workflow Patterns Initiative. 
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Chapter 2 

 

Background 

 

 

 

 

 

 

 

 

2.1 Introduction 

 

There is a large body of work in the area of business process modeling: transactions, 

workflows, and long running transactions. In this chapter, we provide a literature review 

of some of the well-known modeling approaches and we focus on the parts relevant to the 

respective compensation mechanism. We provide a critique on the limitations of 

compensation mechanism in WS-BPEL and Compensation spheres. The critique is 

exemplified by a case study from E-supply chain systems. Finally we show how our 

COMPMOD model fills the gap in the current compensation mechanism limitations.  
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2.2 Data-Base Centric Transactions 

 

Database centric transactional models provide a strong theoretical foundation for 

transactions. Failure recovery and concurrency control are inherent within the models.  

 

The first of these models is the ACID flat transaction where a strict notion of “all-or-

nothing” is applied. Recovery is mainly based on the roll-back mechanism to restore the 

state of the system to the state before the failure has happened. The ACID transactional 

model is very restrictive, and is not appropriate when transactions are long lived and 

complex and may span multiple local database systems. For this reason, a number of 

extended and relaxed transactional models have been proposed, which relax some of the 

ACID requirements. 

 

Advanced transactional models have been proposed to introduce: 

1- Multi-leveled and nested transactions such as in Nested Transactions  (Moss, 

1985). 

2- The compensation concept in Saga transactional model (Garcia-Molina & Salem, 

1987). 

3- Nesting with compensation mechanism in Open Nested Transactions (Weikum 

& Schek, 1992), Nested Sagas (Garcia-Molina et al., 1991), and Flexible 

transactions (Elmagarmid, 1992; Zhang et al., 1994; Mehrotra et al., 1992), and 

ConTracts (Reuter, 1989;  Reuter, Schneider & Schwenkreis, 1997). 
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Nested models allow transactions to be nested within transactions to form a tree 

transaction. The nesting structure is reflected on the commitment, abort, and 

compensation of its constituent sub-transactions where different models provide 

different protocols with varying flexibilities. 

 

However, transactional models have the following limitations in business process 

modeling:  

 They are developed from the point of view of database management systems and 

thus business related semantics such as activity automation are ignored. 

  Coordination support for multi-tasking and collaborative activities across 

organizations is limited, and thus they are not applicable to heterogeneous and 

loosely coupled systems.  

 Compensation mechanisms are strictly in reverse order of the sub-transactions’ 

commitment order and are hidden from transaction designers.  

 

2.3 Transactional Workflows 

 

Business Processes are usually defined by business analysts to capture the activities and 

their respective orders to achieve some larger business goal. Workflows add a technical 

layer between the services and the business process as seen by a business analyst 

(Montangero, Reiff-Marganiec & Semini, 2011; Gorton et al., 2009).  
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Workflows provide a key functionality in integrating heterogeneous and distributed 

applications into a coherent business process and provide process automation. 

Modeling of such workflows is usually conducted in some graphical notation such as 

BPMN (White, 2004), UML activity diagrams, or YAWL (Van Der Aalst & Hofstede, 

2005)  which are graphical and textual and have formally defined semantics. 

 

A structured work flow consists of symmetrical blocks of AND-split followed by AND-

join or OR-split followed by an OR-join. A workflow is well behaved if “it can never 

lead to deadlock nor can it result in multiple active instances of the same activity”. The 

work in (Kiepuszewski, Hofstede & Bussler, 2000) shows that every structured workflow 

is well behaved.  

 

Workflow patterns in ( Van Der Aalst at al., 2000;  Van Der Aalst at al., 2003; Russell, 

Hofstede, & Mulyar, 2006) present standard defintions of workflow patterns found in 

practical workflow strucures. This is a  good standard for workflow developers, and we 

provide a detailed description of the approach in Chapter 3.  

 

Workflows lack a clear theoretical basis for correctness criteria and support for reliability 

in presence of failures. Hence, transactional workflow is supported with transactional 

semantics such as failure recovery mechanisms and reliable executions.  

 

Failure recovery in transactional workflows can be supported in many ways: 
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1- Direct compensation semantics such as compensation spheres as discussed in 

section 2.5.3. 

2- Indirect compensation support such as YAWL where it is possible to model 

compensation behavior by using YAWL constructs (Brogi & Popescu, 2006). 

3- Dynamic and ad-hoc workflow adaptations in case of failure events such as 

ADEPTflex in (Reichert & Dadam, 1997) (Reichert & Dadam, 1998) and (Müller, 

Greiner, & Rahm, 2004). 

 

Transactional patterns have been introduced first in  (Bhiri, Perrin, & Godart, 2005) to 

propose a transactional approach to ensure the failure atomicity of composite web service 

workflows. Further work in (Bhiri, Godart, & Perrin, 2006) and (Bhiri, Perrin, & Godart, 

2006) used the concept of trasnactional patterns to ensure reliable composite services 

accrording to designers’ specific needs. Control and transactional dependencies are 

defined for component web services and are mapped onto workflow patterns. 

Dependencies expressed in first order logic are employed to validate the transactional 

behaviour of web service compositions. We have drawn inspiration from this work, and 

we provide a detailed descripiton of the approach in Chapter 3.  

 

2.4 LRT Modeling Approaches in Web Service Settings 

 

Web services are coordinated through coordination protocols, and orchestrated through 

orchestration languages at a high level of abstraction and where failures are dealt with as 

exceptions. Coordination protocols describe coordination through transaction messages. 
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Such as: Tentative Hold Protocol (Roberts & Srinivasan, 2001), Business Transaction 

Protocol (Ceponkus et al., 2002), and WS-Transaction (Cabrera et al., 2002). 

 

Web services are composited through orchestration and flow composition languages.  

The body of work in this area has been focused in two directions: Formal modeling and 

orchestration languages.  

2.4.1 Formal Modeling 

 

The semantics of flow or interaction based compositions of web services are achieved 

through proposing extensions of well-known calculi or process algebra. In brief, control 

flow of compensations is achieved through primitives to install and activate required 

compensation activities within compensable processes (processes that are paired with 

compensation activities). The mechanism for installing and activating compensations is 

similar to exception handling primitives (throw and try-catch) of high level languages 

such as C++ or Java. Common to all models, compensation handlers are called from fault 

handlers. What differentiates these models is the way compensations are composed and 

executed. In (Bruni et al., 2005) , these were classified as: 

(1) Compensable flow composition where the way compositions are orchestrated  is 

similar to WS-BPEL and where process algebras are designed from scratch to 

describe the flow of control among services, such as (Bruni, Melgratti, & Montanari, 

2005; Butler & Ferreira, 2004; Butler, Hoare, & Ferreira, 2005).  

(2) Interaction based compensations as extensions of well-known calculi where 

modeling dynamic compensations is addressed, such as π-calculus (Bocchi, 2004) 
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(3) based on BTP, webπ (Laneve & Zavattaro, 2005), and webπ infinity (Mazzara & 

Lanese, 2006). 

In these models, semantic definitions are somewhat complicated. Hence, they are not 

practical to use to model real time business scenarios.  

2.4.2 Orchestration Languages 

 

Orchestration languages build business workflows by developing graphical or XML-

based languages such as XLANG (Thatte, 2001) and WS-BPEL (Andrews et al., 2003) 

(OASIS, 2007). In this section we discuss the general structure and mechanism in WS-

BPEL and in section 2.5.2 we discuss by example some limitations of its compensation 

mechanism. 

WS-BPEL is an industrial standard and language for process modeling based on XML 

and for connecting process activities with web services. WS-BPEL has rich functionality 

and provides fault and compensation handling capabilities for business process designers.  

Scopes in WS-BPEL are used to group activities in the business process based on 

functionality or shared variables and events. Scopes can be nested, that is scopes can be 

defined within scopes. Fault, compensation, and termination handlers are process 

fragments that run if a fault is raised or in case of compensation, to reverse the effect of a 

set of successfully completed activities. Each scope is attached with its own fault and 

compensation handlers as well as a termination handler (to terminate the processing of 

the scope if its parent scope is terminating or exiting).  
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These handlers can either be specified explicitly or can follow a default specification as 

provided by WS-BPEL standard. The control flow of activities is defined by two 

schemes: (1) structured activities controlled by “sequence” or “flow” to impose control 

logic on activities nested within them, and (2) explicit control links between source and 

target activities such that a target activity can only start executing after a source activity 

has completed. A compensation handler can only be invoked by a fault handler which is 

triggered by a fault in the executing process. Furthermore, compensation handlers can 

only be attached to scopes and not to activities 

One major drawback of orchestration languages is that they do not support formal 

definitions for their operational semantics. As a consequence, there has been research 

directed towards formalizing their operational semantics such as BPEL (Qiu et al., 2005) 

based on WS-BPEL and c-join (based on XLANG) (Bruni, Melgratti, & Montanari, 

2004). 

 

2.5 Limitations of Selected Approaches 

 

After having discussed different modeling approaches of business processes in the 

previous sections, we dedicate this section to highlight these limitations by examining a 

running example. We choose an example from an e-supply chain management system 

and we focus on the compensation mechanism of two widely used modeling approaches: 

(1) the modeling language WS-BPEL, and (2) the conceptual modeling approach of 

compensation spheres.  



Chapter 2. Background                                                                                                      

 

28 

 

2.5.1 E-supply chain case study 

 

Internet based supply-chain systems are achieved through integration of information 

systems of all supply chain partners (customers, suppliers, and manufacturers). E-Supply 

Chain may be sourced from several countries, assembled in other countries, and delivered 

to customers all around the world. In service oriented environment, the integration 

between business parties is represented by business process activities (e.g. a workflow) 

which are achieved through web services. A typical customer order represented by a long 

running business transaction, triggers several B2B web services provided by a network of 

independent companies to provide a streamlined material flow between all partners.  

In this thesis, we use examples from E-Supply Chain to illustrate and justify our proposed 

model.  

The example in (figure 2.1) illustrates an inter-enterprise business process occurring in 

the supply chain: how the supplier does business with one of its trusted manufacturing 

partners.  

 

Figure 2.1 Supplier-Manufacturer outsourcing business process OP 
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The sub processes in OP has the following functionalities: 

 SALES: performs activities such as receive order from manufacturer, Audit 

order, and send order acceptance to manufacturer. 

 CHARGE: performs payment activities for the outsourced goods. 

 OUTSOURCE_ANALYSIS: is a routine activity that is performed with each 

order transaction to conduct metrics that are used later in determining company’s 

strategies, marketing goals...etc. 

 DELIVERY: delivers the goods to the manufacturer. 

 CHECK_GOODS: the manufacturer checks the goods. If goods are acceptable 

then the outsourcing process is completed, otherwise an exception will occur.  

The OP process has the following logic: 

Once the sales activity is completed, three activities are run in parallel; CHARGE, 

OUTSOURCE_ANALYSIS, AND DELIVERY. This special outsourcing scenario is 

conducted with trusted manufacturers. That is why the delivery of goods is performed in 

parallel with payment. However, the process logic requests that if the goods were to be 

returned for any reason such as “not meeting the required specifications”, the goods must 

be returned to the supplier warehouses before the payment is refunded to the 

manufacturer. 
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2.5.2 Compensation Mechanism in WS-BPEL 

 

Due to lack of compensation semantic formalism, the compensation mechanism in WS-

BPEL may show anomalies in certain execution scenarios such as neglecting 

compensation control links that cross scope boundaries as discussed in (Khalaf, Roller, & 

Leymann, 2009). In other words, WS-BPEL does not provide guarantee on compensation 

order.  

In WS-BPEL, the compensation order of activities within scopes is strictly in reverse 

order of their completion and this order is carried out by default compensation handlers. 

Although explicit control links are allowed between activities/scopes and they are obliged 

during the normal execution flow, the reverse order of control links during default 

compensation processing is not straightforward and hence could be violated (König, 

2006) and (Thatte & Roller, 2003). In addition, modeling compensation logic in WS-

BPEL exhibits high complexity behavior in the presence of scope nesting together with 

control links that cross scope boundaries.  

We will show next in a step by step fashion the compensation mechanism in WS-BPEL 

by discussing a running example and we show how inconsistencies could occur in the 

compensation behavior. In (figure 2.2), we show a high-level graphical illustration for the 

business process of (figure 2.1). The visual cues in (figure 2.2) are borrowed from 

(Khalaf et al., 2009). 
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Figure 2.2 WS-BPEL process for supplier-manufacturer outsourcing example 

 

Scope OP represents the outer most scope that groups scope DELIVERY, SCO, and 

activity CHECK-GOODS. We assume that scope SCO groups SALES, CHARGE, and 

OUTSOURCE-ANALYSIS activities based on some shared order, customer, and 

payment variables. The solid arrows represent the control logic of business process 

activities and the dashed bold arrow represents an explicit control link to represent the 

compensation logic of the process as explained in section 2.5.1. Hence stating that if the 

scope OP is compensated, then the goods must be returned first (compensator of 

DELIVERY) before payment is refunded to the manufacturer (compensator of 

CHARGE). 

In WS-BPEL, when a scope is activated and running then its fault and termination 

handlers are installed and its compensation handler is not installed. When a scope is 

completed successfully then its fault and termination handlers are de-installed and its 

compensation handler is installed. 
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The illustration in (figure 2.2) assumes an execution instance of OP and hence the 

execution states of OP components are as follows: OP, SCO and 

OUTSOURCE_ANALYSIS are activated where SALES, CHARGE, and DELIVERY 

have been completed. If we assume that CHECK_GOODS has failed, the compensation 

mechanism of WS-BPEL will perform the following: 

1- The failure of CHECK_GOODS will raise a fault exception to fault handler of OP 

and the termination handler of OP will initiate the termination of immediately 

nested activated components starting with non-scope components then scope 

components. In this scenario there are no activated non-scope components and 

only SCO is activated. 

2- The fault handler of SCO is deactivated and the termination handler of SCO 

terminates the activated OUTSOURCE-ANALYSIS.  

3- The termination handler of SCO then invokes the compensation handler of SCO 

in default compensation order. Since SALES and CHARGE are not linked 

through explicit control dependency therefore their compensation is performed in 

any order.  

4- When the compensation handlers of both SALES and CHARGE have finished, 

the control goes to the default fault handler of OP. 

5- The fault handler of OP then invokes the compensation handler of OP which 

invokes the compensation handler of DELIVERY and the scope is compensated. 
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The compensation mechanism of WS-BPEL on this specific scenario exhibits violation of 

the explicit control link between CHARGE and DELIVERY and that the payment has 

been refunded to the manufacturer before the actual goods have been returned to supplier. 

Hence, the default handlers in WS-BPEL in some execution settings may over rule 

explicit control links.  

There has been research directed to overcome such non-deterministic compensation 

behavior in WS-BPEL. For example, in (Khalaf et al., 2009) the authors  proposed a 

deterministic model for handling compensations by altering the behavior of handlers and 

relaxing restrictions on control links. In (Coleman, 2005), the authors request a richer 

capability of compensation handlers. However, the default compensation of activities 

within scopes remains the same: reverse order of their completion.  

One could argue that the business process could be modeled in a different way but this 

would necessitate that the business designer should comprehend all possible execution 

states of the process which is not a feasible solution. Furthermore, as the complexity of 

the business process increases, modeling compensation behavior becomes cumbersome.  

In COMPMOD, the compensation behavior is clearly determined at design time and 

during compensation mode, the explicit compensation links over rule any other control 

dependencies. In table in 2.1, we summarize some of the differences between the 

COMPMOD and WS-BPEL.  
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 WS-BPEL 2.0 COMPMOD 

Model  Executable modeling language Conceptual model 

Control flow Structured nested activities + 

explicit control links 

Control dependencies derived 

from workflow structure + 

explicit compensation 

dependencies  

Scopes  Explicitly assigned to group 

activities based on shared variables 

or functionality. 

 

Implicitly formed by the 

model to group activities 

nested within workflow 

structures. 

Compensation 

order 

Determined and calculated during 

runtime depending on execution 

state of scopes 

 

Determined and calculated at 

design time  

 

Compensation links could be over 

ruled by default handlers behavior  

 

Compensation dependencies 

have priority over control flow 

dependencies 

 

Reverse order  Based on designer tailored 

compensation dependencies 

Compensation 

design 

flexibility 

“Default handler behavior causes 

high complexity in the default 

compensation order making it 

difficult for a designer to 

anticipate the resulting behaviors 

when making process design 

decisions” (Khalaf et al., 2009) 

Compensation dependencies 

can be assigned in any order 

independent of control flow of 

activities 

Compensation 

behavior  

Possible un-deterministic 

behaviors 

Deterministic  

Table 2.1 Compensation behavior WS-BPEL vs. COMPMOD 

 

 

2.5.3 Compensation Mechanism in Compensation Spheres 

 

Atomic and compensation spheres in (Leymann, 1995) and (Leymann & Roller, 2000) 

propose a conceptual model for workflow management systems to allow for transactional 
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properties such as “all-or-nothing” and compensation mechanism to be applied to 

workflow business processes. We discuss in this section the compensation spheres. A 

compensation sphere is an arbitrary collection of activities that are tightly related and 

share a common fate. Each activity in the compensation sphere is coupled with a 

compensating activity. If an activity in the compensation sphere has failed and aborted, 

then all completed activities within the sphere are compensated in reverse order. We 

discuss by example (figure 2.3) the compensation sphere mechanism. The workflow of a 

business process P is detected as a directed graph (figure 2.3 (a)) where a designer can 

arbitrarily select a compensation sphere S. Based on this selection, the mechanism 

induces a compensating graph or map S* (figure 2.3 (c)) by deriving P
-1

 from P where P
-1 

represents the reversed edges of P. When a compensation sphere commences its 

compensation, the execution starts by compensating activity L and cascades 

compensation of activities following the control edges in S*.  

One advantage of this approach is offering flexibility by involving some degree of 

arbitrary assignments of compensation orders within a sphere- as opposed to strictly 

reverse order. For example, indirectly connected activities in P such as B and I but where 

I is reachable from B in P can be grouped in S. Furthermore, non-connected activities 

such as B and G in P but where B is reachable from G in P
-1

 can also be grouped in S.  
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Figure 2.3 Compensation Spheres borrowed from (Leymann & Roller, 2000) p. 271 

 

However, compensation spheres have two restrictions: 

R1. Any two activities that are non-connected in both P and P
-1

 cannot possibly be 

grouped alone in a single compensation sphere such as (A and B) or (E and I).  

R2. Compensation spheres approach does not provide the process designer the ability to 

assign extra compensation control flow edges such as to explicitly connect the non-

connected activities in the process graph.  

We apply the compensating graph algorithm in (figure 2.3) on our outsourcing example 

as depicted in (figure 2.4). Note that CHARGE and DELIVERY are not connected in 

both P and P
-1 

(restriction R1) and hence grouping them in a sphere leads to un-connected 
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graph S* (figure 2.4 (c)). And because of restriction R2, it is not possible to apply the 

required compensation dependency between CHARGE and DELIVERY. 

One could argue that the designer can change the design of process such as to be able to 

force the required compensation orders if they cannot be systematically applied. 

However, in COMPMOD model we strongly avoid restricting the making of the design 

decisions of the business process because of compensation mechanism limitations. 

 

Figure 2.4 applying compensation spheres on outsourcing busing process 

 

2.6 Conclusion 

 

One of the aims of our COMPMOD approach is to simplify the design of business 

processes. We do so by performing compensations when explicitly requested by the 

designer and in the order required by the business process logic regardless of how the 

LRT is structured or how activities are scoped. Hence, designers can easily view and 
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reason about the customized compensation order to decide how best to design their 

processes.   Scopes in COMPMOD are implicitly defined over nested structures. This 

structure is totally ignored during compensation and the priority is given to the explicitly 

defined dependencies 

We have shown that purely transactional models force a strict compensation mechanism 

and that the business designers are not provided with the capability to alter compensation 

orders and that reverse compensation order is automatically executed.  

While workflow models show a high degree of process automation, they fall short in 

showing transactional properties including compensations. 

The complexity of compensation in WS-BPEL is a problem.  It is hard for process 

designers to comprehend all possible behaviors a process will have, due to 

compensations, as they always must keep in mind all current states in all different scopes 

and their control link dependencies.  

We have also shown by example how there are cases in compensation spheres where un-

connected activities in the process cannot be grouped in a sphere which imposes 

restrictions on process designers. 

We strongly claim the importance of freely assigning compensation patterns over process 

activities without putting into consideration the restriction imposed by the process 

structure. 
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Chapter 3 

Fundamentals  

 

 

 

 

 

 

 

 

3.1 Introduction 

 

Our modeling approach adopts and extends two main approaches: Workflow Patterns and 

Transactional Patterns. In this chapter, we discuss each of the adopted approaches, and 

provide an informal description of the operational semantics of our extensions. 

Definitions are illustrated with examples from the E-supply Chain management systems.   

We also discuss some reliability and integrity issues related to COMPMOD patterns. 
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3.2 Workflow patterns 

 

A Long Running Transaction in COMPOD model is represented as a workflow schema 

(LRT-WF). A workflow systems’ functionality depends on task sequencing, split 

parallelism, synchronization and iteration constructs as means of automating the business 

process.  Different workflow management systems provide different semantics for the 

same construct. We adopt the semantics from “Workflow Patterns” (Russell et al., 2006)  

as a paradigm for the informal descriptions of our model constructs. The workflow 

patterns approach proposes an imperative definition of work flow patterns and provides 

the patterns as a standard to be employed by business process designers and workflow 

system developers. 

 

Workflow patterns have been developed as part of an initiative commenced in 2000 by 

(Van Der Aalst et al., 2000). They classify the core architectural constructs inherent in 

workflows in a language and technology independent way, thus allowing for the 

definition of the fundamental requirements of business process modeling. Workflow 

patterns consider workflow specifications from a control-flow perspective and 

characterize a range of control flow patterns that might be encountered when modeling a 

business workflow. Following the initial work, twenty patterns were introduced in (Van 

Der Aalst et al., 2003) and a total of forty three control patterns were revised/proposed in 

(Russell et al., 2006).  
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The patterns range from simple constructs that are supported by most of the workflow 

management systems to complex routing primitives that are not yet supported by today’s 

commercial workflow management systems or business process modeling languages. The 

work supports each pattern with an informal description and context assumptions, formal 

descriptions using Colored Petri Nets (Jensen, 1997) implementation related issues, and 

provides evaluation criteria for workflow developers to assess their offerings of full, 

partial, or no support of a given pattern.  

 

Workflow Patterns are classified in (Russell et al., 2006) as (a) five basic control-flow 

patterns, (b) four advanced branching and synchronization patterns, (c) two structural 

patterns, (d) four multiple instance patterns, (e) three state-based patterns, (f) two 

cancellation patterns., and (f) twenty three new control flow patterns which add to the 

above classifications in addition to loops and multiple instances patterns. The 

COMPMOD model assumes only a single instance of activities for a given process 

instance and therefore multiple instances, loops and interleaved patterns are not yet 

supported by the model. However, their applicability is a practical extension of the model 

and is discussed as a future work in this research in (Chapter 8).  

 

Workflows embrace branches of execution that are split, synchronized, merged, or 

discriminated at different points in the workflow process. A split pattern splits a branch 

of execution into two or more branches and the type of split construct determines the 

mode of branch routing. There are three basic split patterns, namely; Parallel Spilt (AND-

split), Multi-Choice (OR-split), and Exclusive Choice (XOR-split). Parallel Spilt and 



Chapter 3. Fundamentals                                                                                                   

 

42 

 

Multi-Choice create concurrent routing of execution branches, while Exclusive Choice 

creates exclusive routing, where only one of the split branches is enabled at runtime 

depending on distinct choice conditions associated with each branch. 

 

Two or more branches of executions can be synchronized, merged without 

synchronization, discriminated (only 1 out of M paths is chosen), or partially joined (N-

out-of-M) by using a join construct that reflects the required semantics of the join.   

 

The LRT-WF schema of COMPMOD is modeled as a structured workflow.  Structured in 

this context can be viewed as a notion of well-formedness (Kiepuszewski, Hofstede, & 

Bussler, 2000), where concurrent and exclusive branches are encapsulated within scope 

patterns. Scope patterns, our contribution to the workflow patterns initiative, start with a 

split pattern and end with a join pattern. The type of split and join patterns reflect the 

required operational semantics of the scope.  

 

Scope patterns in COMPMOD can encapsulate further scopes, thus allowing for the 

modeling of multi nested transactions. The number of splits and joins within a nested 

scope are balanced, and not interleaved.  

 

The structured nature and the operational semantics of our scope patterns are emphasized 

at both; the split type and the join type of the scope pattern. Due to the diversity of join 

constructs, we apply further classification to the patterns proposed in (Russell et al., 
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2006), based on the operational semantics of join patterns and utilize this classification in 

many different ways throughout the discussions in this thesis, including: 

 

1- Informal and formal description of proposed scope patterns 

2- Evaluation of partially supported join patterns 

3- Evaluation of potentially applicable new scope patterns given the underpinning 

structure semantics of the model. 

4- Discussions and Conclusions. 

We classify join patterns1 as follows: 

1- Synchronization (AND-join): the convergence of two or more branches into a 

subsequent branch such that the thread of control is passed to the subsequent 

branch when all input branches have been enabled. The context of the pattern 

assumes that (a) the incoming branches are parallel and result from an earlier 

AND-split, (b) each incoming branch executes only once, and (c) the construct is 

enabled once all incoming threads are completed. The (Generalized AND-join) is 

a variation of AND-join where multiple instances of incoming branches are 

allowed.   

2- Merge: the convergence of two or more branches into a single subsequent branch. 

Each enablement of an incoming branch results in the thread of control being 

passed to the subsequent branch. There are two variations of this construct, the 

Simple-Merge (XOR-join), which allows only one incoming thread to be active at 

any time, while in the (Multiple-Merge) construct, it is possible for more than one 

                                                 
1 Descriptions in italics are borrowed from RUSSELL, N., TER HOFSTEDE, A. H. M. & 

MULYAR, N. 2006. Workflow controlflow patterns: A revised view. 
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3- incoming branch to be active simultaneously. Note that incoming branches are 

assumed to be distinct, and do not necessarily diverge from an earlier split pattern, 

and need not to be synchronized.  

4- Partial join (N-out-of-M): the convergence of M branches into a single 

subsequent branch following a corresponding divergence earlier in the process. 

The thread of control is passed to the subsequent branch when N of the incoming 

branches have been enabled. Variations of this join pattern are: (a) Structured 

Partial Join, where subsequent ennoblements of incoming branches do not result 

in the thread of control being passed on. The join construct resets when all active 

incoming branches have been enabled. (b) Blocking Partial Join where the join 

construct resets when all active incoming branches have been enabled once for 

the same process instance and subsequent enablement of incoming branches are 

blocked until the join has reset – ideal for scopes within loops, and (c) Cancelling 

Partial Join where triggering the join also cancels the execution of all of the other 

incoming branches and resets the construct.   

5- Discriminator (1-out-of-M): the convergence of two or more branches into a 

single subsequent branch following a corresponding divergence (in case of the 

Structured Discriminator), or following one or more corresponding divergences 

(in case of the Unstructured Discriminator) earlier in the process model. The 

thread of control is passed to the subsequent branch when the first incoming 

branch has been enabled. Variations of this join pattern are: (a) Structured 

Discriminator where subsequent enablement of incoming branches do not result 

in the thread of control being passed on and the construct is reset when all 
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6- incoming branches have been enabled, (b) Blocking Discriminator where the 

discriminator construct resets when all active incoming branches have been 

enabled once for the same process instance. Subsequent ennoblements for of 

incoming branches are blocked until the discriminator has reset – ideal for 

constructs within loops, and (c) Cancelling Discriminator where triggering the 

discriminator also cancels the execution of all the other incoming branches and 

resets the construct. 

7- Synchronization Merge: the convergence of two or more branches into a single 

subsequent branch. The thread of control is passed to the subsequent branch 

when each active incoming branch has been enabled. Variations of this pattern 

are (a) Structured Synchronization Merge where the converged branches are 

diverged earlier in the process at a uniquely identifiable point -ideal for 

synchronizing branches resulting from an OR-Split, (b) Acyclic Synchronization 

Merge where the converged branches are diverged earlier in the process and 

determination of how many branches require synchronization is made on the 

basis of information locally available to the merge construct-ideal for non-

structured workflows, and (c) General Synchronization merge where the 

converged branches are diverged earlier in the process and the thread of control 

is passed to the subsequent branch when each active incoming branch has been 

enabled or it is not possible that the branch will be enabled at any future time-

ideal for non-structured and highly concurrent workflows that include looping 

structures. 
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8- Other join patterns: there are a few more join constructs that deal with multiple 

instances of activities within a given process instance, and with multiple 

execution thread instances in a single branch. These patterns are not discussed in 

this work.  

In COMPMOD we provide: 

1- New operational semantics of exclusive split and join patterns: XOR
*
-split and 

XOR
*
-join that allows for alternative exclusive choices such that only one 

alternative can be tried at any time. 

2- Explicit support for sequence, AND-split, OR-split, and XOR
*
-split. 

3- Implicit support for AND-join (synchronization), OR-Join (Structured 

Synchronization Merge), and XOR
*
-join. 

4- Explicit support for the operational and transactional semantics of three new 

scope patterns: AND-scope, OR-scope, and XOR-scope. 

Further patterns (other than sequence, split, and join patterns) are also either fully 

supported by the model, as in “implicit termination” or partially supported, as in “cancel 

region”. In Appendix C, we provide an evaluation for COMPMOD in terms of the extent 

of support of each pattern.   

 

3.3 Informal description of COMPMOD patterns 

 

In the following subsections we discuss the informal descriptions of the main workflow 

patterns in COMPMOD that explicitly outlines the three basic execution routing modes: 

sequence, concurrent, and exclusive execution of branches.   
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3.3.1 Sequence Pattern 

 

The sequence pattern is the main building block of the WF process. It allows connecting 

tasks2 in sequential order. The pattern is informally described as: 

Def. 3.1 (Sequence Pattern) (Russell et al., 2006): An activity in a workflow 

process is enabled after the completion of a preceding activity in the same process. 

 

For example, in a supplier’s sales department, after the order has been received from a 

manufacturer, an auditor activity will check the order to decide whether to accept it or not 

(Figure 3.1). 

 

 

Figure 3.1 Sequence pattern in supplier sales process 

 

In our model, a task or a set of interrelated tasks (scope pattern) can be appended to 

another task or scope in sequential order on the same execution branch.  

3.3.2 Scope Patterns 

  

Informally, a scope pattern is defined as follows: 

Def. 3.2 (scope pattern): A scope-pattern is a composite pattern that couples a 

split pattern with a join pattern to ensure a symmetrical structure of the scope. The 

                                                 
2 Throughout the discussions, tasks, activities, web services, and atomic nodes (Chapter 4 

onward) are all used to refer to an atomic unit of work. 
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scope starts at the split point and ends at the join point. The scope is enabled when 

the incoming branch to the scope is enabled. The split construct of the scope 

diverges the incoming branch into two or more branches which are converged 

later by the joint construct. Enabling diverged branches and the join construct 

depends merely on the semantics of the split and join patterns respectively.   

 

In Figure 3.2, we illustrate a generic representation of a scope pattern that scopes three 

activities A1, A2, and A3. 

 

 

Figure 3.2 A generic scope pattern representation 

 

A diverged branch within a scope may entail one or more tasks that are connected 

through sequence patterns. A task can be an individual task or a scope pattern, thus 

allowing the construction of nested scope patterns that contains a balanced number of 

splits and joins and thus is symmetrical by construction. 
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3.3.2.1 Concurrent Scopes  

 

A concurrent scope creates two or more parallel branches. Once the scope is enabled, all 

concurrent branches are enabled simultaneously. Concurrent branches are synchronized 

via a synchronizer join construct. The synchronizer is enabled when all parallel branches 

are completed. We introduce two concurrent scope patterns, AND-scope and OR-scope. 

An AND-scope starts with an AND-split (parallel split) pattern and is coupled with a 

synchronizer (AND-Join).  

 

We provide an informal description of the AND and OR scope patterns based on both, 

the semantics of the individual patterns involved as described in (Russell et al., 2006) and 

the general definition of scope patterns (Def. 3.2). 

 

Def. 3.3 (AND-scope): the divergence of a branch at the split point of the scope 

into two or more parallel branches that are executed concurrently when the scope 

is enabled. Concurrent branches are synchronized at the join end of the scope and 

execution control can be passed to the task immediately following the 

synchronizer once all of the concurrent branches have completed their executions.  

 

As an example, in Supplier-Manufacturer outsourcing business process OP (Figure 2.1), 

after the SALES activity is completed, three activities (CHARGE, 

OUTSOURCE_ANALYSIS, and DELIVERY) are instantiated in parallel. This control 

flow represents an AND-join pattern. In COMPMOD, this structure is represented by an 

AND-scope pattern as illustrated in Figure 3.3. Note that in the original process logic of 
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OP, the DELIVERY activity is followed by the CHECK_GOODS activity representing a 

sequence pattern between them. Therefore, CHECK-GOODS is enclosed within the 

AND-scope pattern. 

 

 

 

Figure 3.3 AND-scope pattern in OP process 

 

A variant of the concurrent scope is the conditional concurrent scope where only a subset 

of the parallel branches are enabled based on logical conditions paired with each parallel 

branch. The synchronizer is enabled when all enabled parallel branches are completed. 

An OR-scope starts with an OR-split (Multi-Choice) pattern, and is coupled with a 

Structured Synchronizer Merge.  
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Def. 3.4 (OR-scope): the divergence of a branch at the split point of the scope into 

two or more parallel branches where only a subset of the branches are executed 

concurrently when the scope is enabled. The selection is based on the outcome of 

logical expressions associated with each parallel branch. The selected concurrent 

branches are synchronized at the join end of the scope   and execution control can 

be passed to the task immediately following the synchronizer once all of the 

selected concurrent branches have completed their executions.  

 

As an example, in E-Supply Chain systems, after an order has been received by a 

company and the payment has been received from the customer, an inventory check is 

performed to investigate the availability of goods in the company’s warehouses. If the 

ordered goods are available, the goods are delivered to the customer. If the ordered goods 

are not available, a manufacture plan process is instantiated to provide the customer with 

the ordered goods from different supplier(s)/manufacturer(s). In COMPMOD, this 

process logic is represented by the OR-scope pattern illustrated in Figure 3.4. 

 

 

Figure 3.4 OR-scope pattern in Supply Chain process 
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3.3.2.1 Exclusive Scopes   

 

An exclusive scope creates two or more exclusive branches. Exclusive branches alternate 

with each other, but only one exclusive branch is enabled, based on some distinct criteria. 

If an enabled branch fails to complete, an alternative branch is enabled. The scope starts 

with an exclusive split pattern, and ends with an exclusive join pattern. The join pattern is 

enabled when exactly one of the incoming exclusive branches has completed.  In (Russell 

et al., 2006), diverged branches in XOR-split pattern are enabled, based on distinct 

logical values associated with each branch and does not provide alternative enablement of 

branches. The XOR-join (Simple Merge) allows only one incoming branch to be enabled 

at a time, but allows all incoming branches to be enabled. Therefore we extend Workflow 

Patterns with two individual patterns as a variation of both the XOR-split and XOR-join, 

namely the XOR
*
-split3 and XOR

*
-join.   

 

We extend the semantic of the XOR-split as follows:  

 

Def. 3.5 (XOR
*
-split): The divergence of a branch into two or more branches. 

When the incoming branch is enabled, the thread of control is immediately passed 

to precisely one of the outgoing branches based on the highest priority criteria, 

where the first branch has the highest priority. If a branch fails to complete, an 

alternative branch is enabled (if any). The alternative branch is the one with the 

next highest priority.  

                                                 
3 Similar to preference relation in ZHANG, A., NODINE, M., BHARGAVA, B. & 

BUKHRES, O. Ensuring relaxed atomicity for flexible transactions in multidatabase 

systems. 1994. ACM, 67-78. 
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Def. 3.6 (XOR
*
-join): the convergence of two or more branches that had diverged 

from an XOR
*
-split at some point earlier in the WF process. The construct is 

enabled when exactly one of the incoming branches has been completed.  

 

Accordingly, we provide an informal description of the XOR-scope pattern based on 

definitions (Def. 3.2, 3.5, and 3.6). 

 

Def. 3.7 (XOR-scope): the divergence of a branch at an XOR
*
-split point of the 

scope into two or more exclusive branches that are converged later at an XOR*-join 

point. When the scope is enabled, execution control is immediately passed to 

precisely one of the outgoing branches, based on highest priority criteria where the 

first branch has the highest priority. If an exclusive branch fails to complete, an 

alternative branch (if any) is enabled.  The XOR*-join construct is enabled when 

exactly one branch is completed. 

 

The extension of XOR-scope is motivated by two aspects: 

 

(a) Business process aspect: often a number of alternative tasks are proposed in the 

workflow, but there is a clear preference for one over the other.  For example, an 

e-booking scenario could be searching for an outbound journey to a destination 

where the priority is given to flights. If no flights are available for the required 
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(b) date then trains may be tried. The last priority could be travelling by bus if no 

trains are available.   

(c) Long-Running transactional aspect: when a sequence of tasks is required to be 

executed by a business process that executes over a long period of time and the 

risk of failing this sequence is not affordable, then the sequence of tasks could be 

alternated by an alternative sequence of tasks from the business point of view. In 

case of the failure of the first priority scenario, an alternative scenario is tried. E.g. 

in an e-supply-chain business scenario, a contract with one of two or more 

suppliers (prioritized according to their quotes, location, or quality) should be 

guaranteed for a specific product where the contract process might include many 

interrelated tasks. If a contract process fails to complete for a specific supplier, an 

alternative supplier can be tried.  

 

To illustrate the XOR-pattern by example, we consider a delivery process in a typical 

supply chain system. Usually, different delivery methods are provided depending on the 

company’s delivery policies or customer location. Let us assume that in a specific 

delivery scenario, a company offers two methods of delivery: deliver by car or deliver by 

plane where priority is given to car delivery. If car delivery is not possible, then delivery 

by plane is attempted. In COMPMOD, this process logic is represented by an XOR-scope 

pattern as illustrated in figure 3.5. 
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Figure 3.5 Delivery XOR-scope pattern 

 

3.4 Reliability and Integrity Issues 

 

Informal descriptions of workflow patterns clarify the operational semantics of the 

constructs in an abstract way and from the control point of view of their intended 

functionality. The descriptions designate when a construct is enabled with respect to the 

enablement of its incoming or outgoing branches. Our workflow model is a transactional 

workflow model where the control flow mechanism is influenced by transactional 

properties such as completions, failures, or cancellations of workflow activities or 

activity scopes. The transactional behavior of a certain activity has an impact on other 

interrelated activities. For example, in Def3.1, an activity is executed when the preceding 

activity has completed. The definition does not state what happens when the preceding 

activity fails.  

 

Given the nested structure nature of the workflow schema, a failure or cancellation of an 

activity has an impact on the transactional behavior of other interrelated activities or 
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encapsulated scopes. An additional challenge is that the transactional nature of our 

workflow model implies that the behavior of the workflow must be reliable and the 

overall system should always be guaranteed to be in a consistent state.  

 

A major concern in reliability assurance is on the failure handling mechanism supported 

by the management model of the workflow.  Analogous to failure handling support, and 

equivalent to it in importance is the compensation handling mechanism. The informal 

semantics of the exclusive scope Def3.7 states that when an exclusive branch is enabled 

but fails to complete, then an alternative branch is enabled. However, it does not state 

what happens to the partially completed activities in the failed branch. Transactional 

integrity assurance requires the partially completed activities to be compensated before 

the alternative branch is executed, due to the potential assumption that alternative 

branches attain the same overall task from the business point of view.  

 

Deadlocks may arise from the ambiguous behavior of join constructs. For example, a 

synchronizer with m incoming branches assumes m enablement of branches for the 

construct to be fired. If one or more of the branches fails, the construct goes into a 

deadlock state. Hence, the synchronizer should be supported with transactional semantics 

to constantly ensure the consistent behavior of the construct even in case of failures.  

 

To address the issues mentioned, we augment the operational semantics of workflow 

patterns with transactional semantics to formally define the implemented patterns in 

COMPMOD. Thus, each workflow activity, branch, and scope is defined with a set of 
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transactional dependencies: activation, completion, failure, cancellation (force-fail), and 

compensation (when necessary). Dependencies are employed to model a reliable 

interrelated behavior of workflow components which consequently guarantees a reliable 

overall behavior of the model. The formal transactional semantics of the model are 

defined through (a) Transactional Dependencies, and (b) Management and Compensation 

policies. Formal descriptions are detailed in chapters 5 and 6.  

3.5 Transactional Patterns  

 

In our model, workflow tasks are web services. Orchestration deals with how different 

services are composed into a coherent whole (LRT). It specifies the order in which 

services are invoked, and the conditions under which a certain service may or may not be 

invoked (Alonso, 2004).  Our orchestration mechanism is inspired by the “Transactional 

Patterns” approach (Bhiri et al., 2006a) (Bhiri et al., 2006b). Transactional patterns are 

aimed at specifying flexible and reliable composite web services. They are a convergence 

concept between workflow patterns and advanced transactional models (Elmagarid, 

1991), and thus they combine the flexibility of work flow control patterns with the 

reliability of transactional models to ensure the transactional consistency of service 

compositions.  

 

Web services emphasize transactional properties for their characterization and correct 

usage. In (Bhiri et al., 2006a), these properties are assumed to be retriable, compensable, 

and pivot. A service s is said to be retriable if it is sure to complete after a finite number 

of activations, while s is compensable if it offers compensational policies to semantically 
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undo its effects, and s is said to be pivot if once it successfully completes then its effects 

cannot be undone. 

 

Each service has a set of operations, depending on the transactional property of the 

service.  A pivot service has a minimal set of abort(), activate(), cancel(), fail(), and 

complete() to allow its abortion, activation, cancellation, failure, and successful 

completion. A compensable service has in addition a compensate() operation to allow for 

its compensation. A retriable service has a retry() operation to allow for its activation 

after failure. 

 

The transactional patterns define orchestrations between services in a composite web 

service by using dependencies to define how services are combined and how the 

behaviour of some given services influences the behaviour of others. Dependencies are 

used to express the relationships that exist between services such as sequence, alternative, 

compensation, activation or cancellation dependencies. They also associate preconditions 

with service operations. The general definition of a dependency is:  

 

Def.3.8 (Bhiri et al., 2006a): A dependency from service s1 to service s2 

exists if a transition of s1 can fire an external transition of s2.  

 

It is assumed that a transition can be an internal or external transition, with internal 

transitions being fired by the service itself (e.g. complete(), fail(), or retry()) and external 

transitions being fired by external entities (e.g. abort(), cancel(), or compensate()). 
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The transactional patterns paradigm discusses simple patterns such as AND-split or 

XOR-split, where a single service exists on each split branch. In addition, the way in 

which the dependencies are defined does not allow for nesting in the composite service. 

The failure handling and recovery mechanism are implemented through compensation 

and alternative dependencies.  

 

We have drawn inspiration from transactional patterns, but provide solutions for multiple 

nested transactions. We extend the notion of transactional patterns to model multi-nested 

transactions by introducing the following concepts (detailed discussion in Chapter 4):  

 

 Atomic nodes, scopes, nested scopes, and execution paths and their transactional 

dependencies and attributes; 

 A hierarchical structure that mirrors the workflow structure of the LRT.  

 Vitality of nodes, scopes, and execution paths; 

 Encapsulation of dependencies on the scope and execution path level to facilitate 

automated propagation of events; 

 Management and compensation policies to support an underpinning framework 

for imposing and automating the control flow of events. 
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Chapter 4 

Model Architecture 

 

 

 

 

 

 

 

 

4.1 Introduction 

 

In this chapter, we discuss the underlying structure of the COMPMOD model. We 

discuss features of the model, the representation of our workflow model, our model 

assumptions, and formal definitions of the workflow patterns and the generic formal 

definitions of transactional dependencies and management policies. This chapter forms 

the basis for Chapters 5 and 6. 

4.2 Features of COMPMOD 

 

COMPMOD is a conceptual management framework for WF Long Running 

Transactions, focusing on the control flow perspective of management. Transactions are 

designed based on structured workflow schemas, where WF constructs are supported 
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with well-defined operational and transactional semantics. On the one hand, the model 

aims at ensuring the reliability and integrity of transaction execution in the context of 

long duration executed through autonomous and loosely coupled web services. On the 

other hand, and given the business oriented nature of LRT’s, the model is aimed at 

providing flexibility in incorporating business and compensation logic into the design of 

transactions in a clear and user friendly way. 

 

Transactional semantics of WF constructs are defined through behavioral dependencies 

and management control policies. Dependencies are defined as predicate logic formulas 

over component states and/or attribute values. Satisfying a dependency fires an execution 

event, such that when an LRT or one of its components activates, completes, fails, force-

fails or compensates, an execution event is fired. A management policy assesses the fired 

event and performs an action based on the operational semantics of the WF model. The 

applied event-control-action mechanism is built on top of a recursive hierarchical 

structure of the WF schema, and is facilitated through automated propagation 

mechanisms that are merely influenced by the recursive hierarchical nature of the WF 

schema.  

 

The management of LRTs must proceed in two parallel directions:  

 

(a) The management of the LRT during its normal execution mode, which must embrace 

a reliable and efficient fault-handling and partial compensation mechanism. 
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(b) The management of the LRT during the execution of its compensation mode 

comprehensive compensation, in case the LRT has failed to successfully complete.  

 

To handle LRTs, a modelling and management system would ideally support the 

following aspects. 1-3 are motivated by the structure of transactions and the fact that it is 

at the business level, where a full understanding of the implications exists; 4 allows for 

the separation of the actual process and handling of execution and exceptions in a vibrant 

and flexible way; and 5-8 are requirements that ensure the practicality of the approach.  

 

1- Multi-level nesting of transactions with reliable behavioural dependencies 

between transaction components and across hierarchy levels;  

2- Definition of designer-order compensation patterns that reflects the business logic 

of the LRT;  

3- Incorporating compensation logic into the business logic of long running 

transactions through transactional dependencies;  

4- Rule-based Policies for managing execution and compensation control flow;  

5- Automated method for propagating activation and successful completion events 

through the hierarchy structure   as a management mechanism. 

6- Automated method for propagating failure events through the hierarchy structure 

as a failure handling mechanism.  

7- Automated method for performing compensation actions while the LRT execution 

is in progress, through backward and forward order compensations.  

8- Flexibility in extending the model through new WF patterns. 
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Aspects 1-7 have been addressed in the proposed model and discussed in this thesis. The 

flexibility of the model is expressed through the extensibility property of COMPMOD, 

and is discussed in Chapter 8.   

4.3 Representations of Nested LRTs  

 

We use two main representations of the workflows in COMPMOD: a workflow 

representation that allows to abstract away from sub workflows and a tree representation 

that is used by the propagation mechanism.  

 

In our model we have two basic components: nodes and execution paths. A node can be 

an atomic node (a single web service) or a scope node – a set of semantically connected 

nodes (atomic and/or scope). An execution path represents a trail of nodes that are 

executed in sequential order. A scope node encapsulated by an execution path is 

interpreted the same as an atomic node. In other words, scope nodes on an execution path 

are like black boxes that encapsulates execution paths and other nodes.  

 

4.3.1 Workflow Model  

 

An LRT, at its highest level, is executed as a flat transaction, i.e. a sequence of nodes that 

are executed sequentially (Figure 4.1). The main execution path is denoted as p0. A node 

can be an atomic node or a scope node. Each scope creates two or more execution paths 

that start from the split point and end at the join point of the scope. Each execution path is 

a sequence of one or more nodes, executed in sequential order where nodes along the 
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path again can be atomic or scopes allowing arbitrary levels of nesting. Through the rest 

of the discussion, we will use the term component to refer to both nodes (atomic/scope) 

and execution paths.  

 

 

 

Figure 4.1 A WF showing level 0 of a sample LRT 

 

The modelling method allows for multi-level nested transactions to address demands 

occurring in real cooperative business processes. In the representation model itself, we 

see alternating levels of paths and nodes. The main execution path of a transaction is 

regarded as level 0 in the workflow. Figure 4.2(a), demonstrates an expanded two level-

nesting of the sample LRT in Figure 4.1 and Figure 4.2(b) demonstrates the LRT with 

level 2 of the WF collapsed. 

 

Considering the execution path 𝑝1 in 𝑠𝑐𝑜𝑝𝑒2, the path consists of an atomic node 𝑛6 

followed in sequence by a scope node 𝑠𝑐𝑜𝑝𝑒2.1 that in turn encapsulates three execution 

paths. We provide a nodeList attribute on path objects to express this: for example 

𝑝1.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡=[𝑛6,𝑠𝑐𝑜𝑝𝑒2.1]. If we collapse level 1 of the WF, the main execution path 

becomes a flat WF that executes the nodes in  p0.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = [𝑛1, 𝑛2, 𝑠𝑐𝑜𝑝𝑒1, 𝑠𝑐𝑜𝑝𝑒2, 

𝑠𝑐𝑜𝑝𝑒3] in sequential order (figure 4.1).  
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Figure 4.2 A WF showing multi levels of a sample LRT  

 

4.3.2 Hierarchical Structure Model  

 

Transaction components –nodes and execution paths- are linked together in a hierarchical 

structure. Each component has a single superior, and an ordered set of one or more 

inferiors. More specifically:  

 

Node component: A superior of any node is the execution path that encapsulates the 

node.  An atomic node is a leaf node that has no inferiors. A scope node has two or more 

inferiors which represents the number of split execution paths it encapsulates.  
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Execution path component: The superior of any execution path is the scope node that 

encloses it. The main execution path of an LRT has no superior. Each execution path has 

one or more inferiors. The inferiors of a path represent an ordered set of one or more 

nodes that the path encloses. The root of the recursive hierarchy is the main execution 

path of the LRT 𝑝0. Figure 4.3 illustrates the hierarchy structure of the sample workflow 

in Figure 4.2(a). 

 

Figure 4.3 Hierarchal Structure of WF schemas 

 

4.3.3 Transactional operators and scopes  

 

COMPMOD’s WF schema is formed as a structured workflow that supports the design of 

arbitrary nested levels of transactions. The well-formed structure of the LRT is forced by 

the model, meaning that the burden of maintaining the balanced structure of (split and 

join) patterns is imposed by the model.  
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A scope node starts with a split operator (OR, AND, or XOR) that is explicitly assigned 

while constructing a scope. The syntax of the scope is defined as: 

 

      (         [                      ]) 

 

When a scope is initially defined, a split operator and a list of split nodes are specified. A 

split node can be an atomic node or a scope node, which facilitates the construction of 

nested scopes.  

 

The AND-split pattern in (Figure 4.4 (a)) is defined as (AND,[n1,n2,n3]) and is 

implemented in COMPMOD as depicted in (Figure 4.4 (b)) where the split pattern is 

coupled with a synchronisation point representing the implicit AND-Join. The number of 

split nodes corresponds to the number of execution paths encapsulated within the scope. 

Therefore, the scope in (Figure 4.4(b)) creates three execution paths namely p1, p2, and p3 

which are represented by the order list PathList of the defined scope node.  

 

A scope in COMPMOD is formally defined as:  

Def.4.1: (Scope Definition) 

A scope is defined as follows:  

∀ = ..    .𝒏   𝑳   =            𝒏   

∀ = ..  𝒏   𝑳    . 𝒚  ={𝑨𝑻𝑶𝑴𝑰𝑪, 𝑪𝑶𝑷𝑬}: 

     =(        ,[          ..          ]) → 

     .   𝒉𝑳   =[  ..  ]  

where operator  {AND,OR,XOR}  
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As mentioned earlier, each execution path creates an ordered list of one or more nodes, 

denoted by nodeList. When a node is appended to an existing execution path 𝑝𝑖, the node 

is appended to 𝑝𝑖 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 . The main building block construct of the WF is the 

sequence construct. A sequence pattern connects two nodes in a sequential order. The 

sequence pattern is formally defined as: 

 

Def.4.2: (Sequence pattern) 

A sequence pattern is defined as follows: 

node1.type={ATOMIC,SCOPE} and node2.type={ATOMIC,SCOPE}: 

SEQPattern=(SEQ,node1,node2)   

pi.nodeList=pi.nodeList+[node2] ,  node2.superior=pi 

where pi=node1.superior 

 

Accordingly, the two level nested scope of (Figure 4,4 (c)) can be denoted by the 

following constructs: 

 

Scope1=(OR,[(SEQ,n1,scope1.1),n2,n3]) where scope1.1=(XOR,[(SEQ,n4,n7),n5,n6]). 
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Figure 4.4 Scope Structure 

 

4.3.4 Execution paths  

 

The type of scope pattern determines the routing mode of its encapsulated paths. An 

AND-scope creates two or more concurrent execution paths, while  an OR-scope creates 

a two or more concurrent paths where only a subset of these paths are executed during 

runtime, the executed paths are those whose enabling condition are satisfied. An XOR-

scope creates two or more exclusive paths: the first path has the highest priority and 

therefore execution starts with the path with the highest priority. If an exclusive path that 

has an alternative path with lower priority fails to complete, the path is compensated in 

backward order, until the split point of the scope is reached (this is done as part of the 
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forward compensation of the LRT), and then the alternative path is executed. Therefore, 

execution paths are assigned with the following transactional attributes:  

1. An execution path IsConcurrent if it is encapsulated within an immediate OR-

scope or AND-scope superior. 

path.superior={AND,OR}   path.IsConcurrent=TRUE 

2. An execution path IsExclusive if it is encapsulated within an immediate XOR-

scope superior.   

path.superior=XOR   path.IsExclusive=TRUE 

3. An execution path hasAlternative, if it IsExclusive and  has a path with lower 

priority in the same scope.  

path.IsExclusive   successor(path)≠NULL   path.hasAlternative=TRUE 

4. A concurrent path does not have an alternative. 

 path.IsConcurrent=TRUE → path.hasAlternative=FALSE  

5. Apart from the main execution path, a path must either be concurrent or 

exclusive.  

 path.IsConcurrent=TRUE → path.IsExclusive=FALSE  

path.IsExclusive=TRUE→ path.IsConcurrent=FALSE 

6. An execution path is IsEnabled if and only if it IsConcurrent path within an OR 

immediate scope and its branching condition is satisfied at runtime. 

7. The main execution path is a special case where: 

path=p0   path.IsExclusive=FALSE   path.IsConcurrent=FALSE   

path.IsEnabled=FALSE 
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4.3.5 Vitality of components  

 

Each LRT component has a vitality attribute that allows it to specify whether a 

component is vital or non-vital. A vitality value IsVital={TRUE/FALSE} is assigned to 

each component, either by specification or by evaluation. Vitality of atomic and scope 

nodes is assigned by specification: that is, according to the business logic of the LRT. 

Essentially, vitality allows the workflow designer to express whether the failure of the 

specific service or scope of services can be tolerated and the workflow can proceed (an 

example of a non-vital task might be one sending a progress message to the invoking user 

– nothing in the process will be broken if the message is not sent).  

 

Vitality of execution paths is assigned by evaluation according to the following rules. A 

path is  

• vital if it encapsulates at least one vital node.  

• non-vital if all the nodes it encapsulates are non-vital.  

 

Note that the decision of assigning the vitality value to nodes (atomic and scope) is based 

on the business logic of the LRT. It is important to note that our management/ 

compensation model does not investigate or analyse the business logic of the LRT. It is 

always assumed by the model that the logic provided for the LRT at design time is what 

it is required from the transaction by the business level.  

 

Vitality of components is utilised in the control propagation mechanism proposed in the 

model. The transactional implication of the vitality measure of a component expresses the 
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impact of successful completion or failure of a component on its immediate superior and 

on its successor in case of node components.  

 

A vital node’s successful completion is necessary for  

1- The successful completion of its superior path 

2- The activation of its successor node(if any) 

The failure of a vital node leads to the failure of it superior path (by propagation), and 

consequently the execution of the path, ends.  

Successful completion of non-vital nodes is desirable for the successful completion of 

its enclosing path, but is not necessary. In other words, the failure of a non-vital node 

will not fail its enclosing path unless it was a non-vital path and all its nodes have failed. 

The same applies to the activation of a non-vital node’s successor, if one exists. The 

successful completion of a non-vital node is desirable for the activation of its successor, 

but not necessary. Hence, the failure of a non-vital node will still trigger the activation of 

its successor (if any).   

 

Execution paths are either concurrent or exclusive. The effect of the successful 

completion or failure of paths, with respect to their vitality measure, is most evident for 

concurrent paths. 

 

The successful completion of a vital concurrent path is necessary for the successful 

completion of its immediate superior scope. The failure of a vital concurrent path will fail 
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its superior scope, and consequently force-fail all the concurrent paths within the same 

immediate superior scope.  

 

The vitality of an exclusive path does not have a direct impact on the successful 

completion or failure of its enclosing scope. An exclusive scope succeeds if one of its 

exclusive paths successfully completes, and fails if all its exclusive paths fail to succeed 

regardless of their vitality measure. Therefore, we consider only concurrent scopes when 

discussing the assignment of vitality measure to scope nodes. 

 

We classify concurrent scopes with regard to the assignment of vitality to the scope and 

its encapsulated paths into three cases: 

 

Case 1: a vital scope with at least one vital path. 

Case 2: a non-vital scope with any combination of encapsulated vital/non-vital paths. 

Case 3: a vital scope with all paths as non-vital. 

 

Case 3 does not seem useful from the business point of view. However, while case 3 

could be designed, it is not desirable, and hence, will exclude it through vitality 

assumptions 2 below. 

 

We justify our exemption of Case 3 as follows: vitality is a way of stating the necessity of 

success of a specific component. If we assume that a scope is vital and is necessary to 

succeed, then we implicitly assume that at least one of its paths is guaranteed to succeed. 
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In case 3, where not all paths are vital, they are all desirable but not necessary to succeed, 

which seems to contradict with the vital assignment of the enclosing scope. However, it 

may be argued that in some senses, a vital scope with only non-vital nodes would succeed 

if only one of the nodes succeeded; thus we wished to leave the option to the business 

process designer.  

 

However, to ensure that processes are generally sensible, we have assumed logical 

restrictions by the model with respect to the design of LRTs as listed in Section 4.7.  

 

4.4 Workflow of OP Case Study in COMPMOD 

 

We represent the OP business process in (Chapter 2, Figure 2.1) using COMPMOD 

architecture. First, in Figure 4.5, we depict the workflow representation of OP in 

COMPMOD. At this stage, we ignore transactional and compensation dependencies but 

we will refer back to the OP workflow case study in Chapters 5 and 6. We assume that 

the process logic of OP defines the OUTSOURCE_ANALYSIS activity as a non-vital 

activity and hence its failure during runtime will not interrupt the execution of OP. 
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Figure 4.5 OP workflow in COMPMOD 

 

Syntactically, the OP workflow is defined as: 

OP=(SEQ,SALES,(AND,CHARGE,OUTSOURCE_ANALYSIS,(SEQ,DELIVERY,

CHECK_GOODS))) 

 

In the following, we list the transactional attributes of OP according to COMPMOD 

model. 

 

(1) Node Types: 

Note that nodeType is a transactional attribute which is assigned for nodes and hence 

the following values apply: 

SALES.nodeType=ATOMIC      Scope1.nodeType=SCOPE 

CHARGE.nodeType=ATOMIC   OUTSOURCE_ANALYSIS.nodeType=ATOMIC 

DELIVERY.nodeType=ATOMIC   CHECK_GOODS.nodeType=ATOMIC   
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(2) Node Lists: 

Note that nodeList is a transactional attribute which is assigned for execution paths 

and hence the following values apply: 

p0.nodeList=[SALES,Scope1]  

scope1.p1.nodeList=[CHARGE] 

scope1.p2.nodeList=[ OUTSOURCE_ANALYSIS] 

scope1.p3.nodeList=[ DELIVERY, CHECK_GOODS] 

 

(3) Path Lists: 

Note that pathList is a transactional attribute which is assigned for scope nodes and 

hence the following values apply: 

 

scope1.pathList=[p1,p2,p3] 

 

(4) Vitality attributes: 

Note that IsVital is a transactional attribute which is assigned for all workflow 

components and hence the following values apply (Table 4.1): 

 

Component IsVital 
p0 TRUE 

SALES TRUE 

CHARGE TRUE 

OUTSOURCE_ANALYSIS FALSE 

DELIVERY TRUE 

CHECK_GOODS TRUE 

scope1.p1 TRUE 

scope1.p2 FALSE 

scope1.p3 TRUE 

Table4.1 Vitality attributes of OP components 
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(5) Path Routing Attributes: 

Note that routing attributes are transactional attributes which are assigned for 

execution paths and hence the following values apply: 

 

Path IsConcurrent IsExclusive hasAlternative 

po FALSE FALSE FALSE 

scope1.p1 TRUE FALSE FALSE 

scope1.p2 TRUE FALSE FALSE 

scope1.p3 TRUE FALSE FALSE 

Table 4.2 Path attributes of OP case study 

4.5 Reactive Management and Execution states  

 

The management system of transactions (COMPMOD) is implemented as a reactive 

system controller (Wieringa, 2003) where system components change their execution 

states and actions in response to stimuli/events. In our model, an event is fired as a result 

of a behavioral dependency satisfaction. A stimulus is triggered as a result of a transition 

in the execution state of a transaction component or as a result of the application of a rule 

(policy), leading to the firing of an event. In other words, COMPMOD is an 

Event/Control driven WF management system that reacts continuously to stimuli/events 

until the LRT execution finally terminates in a state that is meaningful from both a 

system as well as a business perspective. 

 

During the execution life cycle of the transaction, the LRT and its components go 

through different execution states and they are marked with their current execution state. 

The state transition diagrams are depicted in Figures 4.6-4.9.  Initially, the LRT and all its 
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components are marked as NOT-ACTIVATED. State transitions are triggered by execution 

events, and they are marked by the transition actions deployed in the management 

policies. For example, when an activation event is fired for the LRT, commencing its 

execution, the activation event is assessed by an activation policy and the action 

activate(LRT) is performed, which transforms the state of the LRT from NOT-ACTIVTAED 

to ACTIVATED. Activation of the LRT fires the activation event of the main execution 

path, and subsequently an activate(p0) action is performed which transforms the state of 

p0 from NOT-ACTIVTAED to ACTIVATED. The effects of events and actions in our model 

obligate a chain of state transformations that continuously change the state of the LRT 

and its components, in accordance with the management and compensation policies. The 

chain of transformations is controlled by the propagation of an events/actions mechanism 

implemented by the COMPMOD model. If we abstract from the propagation mechanism, 

then the events and actions have identical effects in our mode, and therefore, the two 

terms may be used alternatively to refer to state transformation of components.    

 

 

Figure 4.6 STD for LRT 
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Figure 4.7 STD for atomic nodes 

 

 

 

 

Figure 4.8 STD for scope nodes 
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Figure 4.9 STD for execution paths 

 

The state transition in Table 4.3, lists the state transition actions as implemented in the 

management policies. Note that these actions do not exhibit the propagation of state 

transformations across LRT components. The propagation mechanism and the semantics 

of execution states are discussed in detail in Chapters 5 and 6.  

Action  Current State Next State  
activate(LRT/component) NOT-ACTIVATED ACTIVATED 
succeed(LRT/component) ACTIVATED SUCCEEDED 
fail(LRT/component) ACTIVATED FAILED 
forcefail(LRT/component) ACTIVATED FAILED 
compensate(atomicNode) SUCCEEDED COMPENSATING 
compensate(scopeNode/path) {SUCCEEDED ,FAILED} COMPENSATING 
skip(atomicNode) {NOT-ACTIVATED, 

FAILED,ABORTED} 
SKIPPED 

skip(scopeNode) NOT-ACTIVATED SKIPPED 
compensated(component) COMPENSATING COMPENSATED  

Table 4.3 STT of actions 

 

4.6 Hierarchical Transactional Dependencies and Policies 
 

In the formal definition of the semantics of COMPMOD, we make a clear distinction 

between the transactional behaviour of a single component and the transactional 
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behaviour of interrelated components. The behaviour of a single component in relation to 

its environment is formalised by the transactional dependencies that are defined for each 

component, while interrelated behaviour between LRT components is formalised by 

management policies.  

 

In the following subsections, we show how this is realised in COMPMOD. 

4.6.1 Dependencies 

 

The LRT4 and all of its components (atomic nodes, scope nodes, and execution paths) are 

defined with transactional dependencies that set the execution conditions under which 

each component may raise one of the execution events (failure, completion, force-fail, 

compensation or compensation completion). A component can raise an execution event 

depending on a single change of state of another component. A component can also raise 

an execution event depending on the single change of state of two or more other 

components.  

 

Dependencies are defined in encapsulated style which is purely driven by the hierarchy 

structure of the WF schema. Encapsulation means that interrelated components5 can only 

interact with each other through their immediate superior component but can interact 

directly with their superior or their immediate sibling components, e.g. a successor and a 

predecessor of a node on the same execution path.  A component can also interact 

                                                 
4 In this case, it is considered as a component.  
5 As an example: nodes running on distinct concurrent paths of the same scope. 



Chapter 4. Model Architecture                                                                                       

 

82 

 

directly with its immediate inferiors, e.g. a scope with its immediate encapsulated 

execution paths. 

 

Behavioural6 dependencies are defined in first order logic and in terms of sets of pre-

conditions that, when satisfied at run time, lead to an event being fired.  

 

The general definition for a behavioural dependency is:  

 

Def. 4.3 A behavioural dependency exists from componentj to componenti iff a 

state transition in componenti can fire an execution event for componentj:  

𝑫ep(     𝒏 𝒏 j):=   𝑪 𝒏 (     𝒏 𝒏  .     ) 

 

Behavioural dependencies can also be defined between a set of sibling components and 

their immediate superior component, or between a component and its superior, essentially 

extending Def. 4.3 to allow for: 

 

1- A number of sibling components to fire an execution event for the superior 

component:  

Dep(superior):=PreCond([sibling1.state..siblingn.state]) 

An example: a failure event fires for an execution path when all its encapsulated 

nodes fail. 

                                                 
6 The terms behavioral, transactional and executional dependencies are used 

interchangeably in the thesis, depending on the context it is used in, but they refer to the 

same concept. 
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2- A component to fire an execution event for an inferior component: 

Dep(component):=PreCond(componentSuperior.State) 

An example: an activation event is fired for the first node in an execution path 

when the path is activated.  

3- A component to fire an execution event for its superior component: 

Dep(component):=PreCond(componentInferior.State)  

An example: a failure event is fired for an execution path if a vital node on the 

path has failed to complete. 

 

The way dependencies are defined imposes a hierarchical relationship between 

components and facilitates the hierarchical propagation of events through management 

policies.  

 

4.6.2 Policies 

 

Management rules (or policies) incorporate autonomy into systems. The most common 

form is that of ECA (event condition action) rules which present an event driven 

approach. ECA rules in COMPMOD are implemented to model the expected execution 

behavior of the LRT. When an event is fired, it triggers an ECA rule, and if the condition 

holds, an appropriate action takes place. ECA rules have the following pseudo generic 

form:  

 

 



Chapter 4. Model Architecture                                                                                           

 

84 

 

Def.4.4 (Generic Policy Form)  

ON event IF condition DO action  

 

The event part of the rule can be (a) an internal system generated event such as 

completion, failure or cancelation of an atomic node or, (b) an external event fired as a 

result of a dependency condition satisfied for a component or, (c) a stimulus: a result of 

executing a state transition event of a component. The condition part is one or more 

connected Boolean expressions that need to hold for the rule to be applied. The action is 

a sequence of one or more actions to be performed in case the rule is applied, and can in 

turn introduce new events (stimuli) that need to be handled. Basic to the set of 

management policies is a well-defined mechanism for marking the execution states of 

components, based on the transactional semantics of the model.  

 

The set of state transition actions that are implemented in the policies are listed in Table 

4.1. Note that actions lead to raising an event (e.g fail()), but also have a side effect on the 

state of the respective component, as follows:   

if component.state=ACTIVATED 

then component.state:=FAILED 

 

Analogously, the event raised by an action (e.g. succeed()) may also have a side effect on 

the state of its immediate neighbor  components. For example, succeed(exclusivePath) 

leads to succeed(exclusivePath.superior). 
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COMPMOD policies reflect the following transactional aspects:  

 

1-  business logic of the LRT (e.g. a fail policy states that if a node is vital and 

failed, its superior path fails);  

2-  semantics of a COMPMOD model (e.g. a force fail policy states that if a force-

fail event is fired for an activated atomic node, the node is aborted);  

3-  semantics of WF patterns (e.g. a completion policy states that the successful 

completion of an exclusive path signals the successful completion of the scope). 

 

Based on their transactional implications, we split policies in COMPMOD into three 

categories: 

1- Management Policies:  automate the control flow of activation and completion 

events; 

2- Propagation Policies: automate the propagation of events through the hierarchy 

structure of the WF schema.  Propagation of failure and force-fail events defines 

the Failure-Handling mechanism of the model; 

3- Compensation Policies: automate control flow of compensation events.  

 

Transactional dependencies, Policies, and Failure-Handling mechanisms are discussed in 

Chapters 5 and 6. 
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4.7 Model Assumptions 

 

The model adopts semantic assumptions that are essentially implemented in the proposed 

formalism. We operate our mechanisms based on these assumptions, but provide an 

underpinning structure that allows them to be relaxed or extended without affecting the 

formalism of the model. 

4.7.1 Vitality Assumptions  

 

Assumption 1: If the successful completion of a node is necessary for the successful 

completion of the LRT, the node must be defined as a vital node, and must be preceded 

with a hierarchy of vital superiors; that is, from the node upwards to the root of the 

hierarchy (the main execution path). 

Assumption 2: The main execution path of the LRT should be vital, and must 

encapsulate at least one vital node. 

Assumption 3: If all paths in a scope are non-vital, their encapsulating scope should be 

non-vital by specification.  

These assumptions are reasonable in practical business processes, and will be discussed 

in more detail in Chapter 4, section 4.3.5. 

 

4.7.2 Failure Assumptions 

 

It is assumed by the model that a failure event for an atomic node (web service) 

intuitively means that the node cannot successfully complete its required task. This 
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assumption allows for a broader meaning of failures than to restrict it to hardware or 

communication failures. We assume that an atomic node signals an internal failure event 

for the following reasons: 

 

Assumption 1: Network or remote server failure, where the node cannot be retried. 

Assumption 2: Network or remote server failure, where the node had been retried a 

specific number of times without success. 

Assumption 3: The execution time of a node has exceeded its timeout constraints. 

Assumption 4: The node gave a FALSE feedback when a TRUE feedback was expected. 

For example, if a flight booking task tries to book a flight for a specific date on a specific 

airlines but returns with no available booking, the node is considered as failed. 

 

The failures of the nodes listed above are internal, in the sense they are out of the control 

of the management system. However, a node may also be forced to abort as a result of an 

external fail event enforced by a force-fail policy. This is the case when a running node is 

aborted, due to the failure of it enclosing scope.  

 

4.7.3 Cancellation assumptions 

 

Assumption 1: The LRT can be cancelled by the end-user by raising an external 

cancellation event at any time during its normal execution. 

Assumption 2: A web service can be cancelled by its provider by raising an internal 

cancellation event and its cancellation is regarded as failure of the node. 
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Note that the cancellation, failure or force fail events of a component in COMPMOD all 

result in the component being failed;  except for running atomic nodes (web services), 

they are aborted. 

 

Although the model does not support external cancellation events for components, it 

provides the necessary infrastructure to extend the model, such that external cancellations 

of components by the user are possible. The force-fail policies deal with force-fail events 

that are externally fired, due to the propagation of a failure event from a superior. The 

policies can also be extended to consider external cancellation events.    

 

4.7.4 Compensation assumptions 

 

Our compensation mechanism is based on traversing compensable nodes on a 

compensating path, according to a predefined order which is specified at the design time 

and depends on mode of compensation being applied. This order is sequential reverse 

order of activation in case of partial compensations and is customized (designer defined 

order) in case of comprehensive compensations and we apply the following assumptions: 

Assumption 1: Each node (web service) is paired with compensating actions7.   

 

The assumption can be relaxed by adding an attribute to denote pivot nodes (Mehrotra et 

al., 1992) (i.e. nodes that once they are succeeded, their effect cannot be undone). 

Consequently, customized compensation dependencies can only be restricted to non-pivot 

                                                 
7 Similar to “compensators” of SAGA  
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nodes. If a pivot node is traversed in a compensating path, then it can be skipped (in 

partial compensation mode) or marked visited (in comprehensive compensation mode). 

The assumption can be further relaxed by assuming null compensators for tasks that may 

not be logically undone, e.g. calculating an order price. 

 

Assumption 2:  The compensation of an atomic node (web service) is guaranteed to 

succeed.  

 

It is possible to relax this assumption, and consider failures of compensating actions for 

atomic nodes. In this case, we expect that feedback is generated to the user to take further 

action regarding the unperformed compensation of the node. Compensation failure 

policies may be added to assess such failure events and mark the node as failed. 

Consequently, a failed node is skipped or visited while traversing a compensating path. 

  



 

90 

 

Chapter 5 

Management Mechanism 

 

 

 

 

 

 

 

 

5.1 Introduction  

 

In this chapter, we show how the model’s operational semantics are formalized through 

transactional dependencies and management policies. Formal descriptions of the LRT 

and its components incorporate three interrelated management mechanisms in the 

formalism:  

1- Autonomous Control Management Mechanism which is realized through 

activation and completion dependencies and policies. 

2- Autonomous Failure Handling Mechanism which is realized through failure and 

force-fail dependencies and policies, and is merely automated by the propagation 

mechanism embedded in failure and force-fail semantics. 
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3- Autonomous Compensation Mechanism, which is realized through compensation 

dependencies and policies. 

The control flow and failure handling mechanisms are defined through control charts, and 

are linked to dependencies and management policies.  The control charts are interrelated 

in the flow of events and actions, and accordingly,  some control flow actions appear in 

the charts before referencing them in the discussion, or vice versa. In addition, the flow of 

events and actions necessitates navigation through the control charts. Compensation 

management, mechanisms and their related control charts are discussed in Chapter 6.  

 

The discussion in this chapter starts by showing how sequence and concurrency control is 

handled by COMPMOD semantics with respect to vitality measures. A discussion of 

management and failure handling mechanisms follows. As an illustration, we apply the 

defined dependencies in this chapter on the OP workflow case study.  

 

5.2 Path and Scope Execution 

 

In the following subsections, we show how the execution semantics of execution paths 

and scopes are captured in COMPMOD and how the consensus of their successful 

completion or failure –with respect to vitality measures- is resolved. It is important to 

note that in the formal definition of the completion conditions of the LRT and its 

components, the model distinguishes between completion and successful completion 

events for execution paths and concurrent scopes8. In general, a completion dependency 

                                                 
8 Exclusive scopes share semantics of execution paths  
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fires a completion event, indicating that a component has finished its execution while a 

completion policy evaluates a successful completion event and subsequently marks a 

component as SUCCEEDED. As for atomic nodes, a completion event is concluded as 

successful completion. 

 

5.2.1 Sequence Control  

 

A sequence of nodes on a path commences its execution by the first node in the path, and 

ends its execution when the last node in the path ends its execution. Execution paths with 

single nodes are the case where the node is considered as the first node and last node 

simultaneously. An execution path is assessed as vital or non-vital by evaluation (Chapter 

4, section 4.3.5), and hence the vitality of the path reflects the vitality of its encapsulated 

nodes and vice-versa. A vital path encapsulates at least one vital node while non-vital 

paths encapsulate non-vital nodes only. The first node of a sequence is of importance to 

the activation of the sequence of nodes (if any) on the same path. The last node of the 

path is of importance to the successful completion or failure of its superior path. We refer 

our discussions in this section to (Figure 5.1) where we depict three different execution 

paths with different combinations of vital and non-vital nodes. 
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Figure 5.1 Execution path scenarios with respect to vitality  

 

In a non-vital path, execution flows from start node to end node of a path and failures of 

non-vital nodes will not stop the path from completing its execution (e.g. failure of nodes 

in p2). As for vital paths, execution flows from start node to end node of a path as long as 

no failure of a vital node is triggered, i.e. execution control can only reach the last node 

iff all preceding vital nodes (if any) have succeeded (e.g. execution will reach n9 in p3 as 

long as n7 has succeeded). 

 

Two transactional dependencies signal the end of execution of a path; they are 

completion CompLDep() and failure FailDep() dependencies.  

 

The semantics of completion and failure of execution paths are defined as follows: 

1- A path completes CompLDep(path)=TRUE when the last node in the path ends 

its execution either by SUCCEED or FAIL (e.g. execution of p1 completes when 

execution of n3 completes).  

2- A non-vital path fails FailDep(path)=TRUE if all nodes on the path FAIL (e.g. 

FailDep(p2)=TRUE if n4, n5, and n6 all fail). 
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3- A non-vital path succeeds if it completes CompLDep(path)=TRUE and no failure 

event is fired for the path FailDep(path)=FALSE (e.g. p2 succeeds if 

CompLDep(p2)=TRUE and FailDep(p2)=FALSE). 

4- It is a failure propagation policy of the model that failure of a vital node will fail 

its enclosing path.  

Def. 5.1: (propagation of vital-node failure)  

𝒏    𝑰            (𝒏   )           𝑷  𝒉        𝑨𝑰𝑳𝑬𝑫 

 

For example, if n2 in p1 fails, then p1 fails. 

 

The successful completion of vital and non-vital paths is assessed after a completion 

event of the path is fired, and depends on the final execution state of the last node on the 

path. When the last node ends its execution either by success or failure, a completion 

event is fired for its superior path: 

Def. 5.2: (completion of path) 

       (        )      (        )                                                                                      

𝑪   𝑳𝑫  (        𝑷  𝒉)  𝑻  𝑬 

 

For example, 𝑠 𝑐𝑐𝑒𝑒𝑑(𝑝  𝑛 )     𝑖 (𝑝  𝑛 )                                                                                      

 𝑜 𝑝𝐿 𝑒𝑝(𝑝 )       
 

Successful completion of the last node in a path imposes the following semantics: 

 

1- In case of a non-vital path, successful completion of the last node in the path 

indicates that a failure event could not possibly fire for its superior path since a 

failure event fires only when all nodes on a path fail to succeed, thus: 

Def. 5.3:  

       (        )           𝑷  𝒉 𝑰        

                                                     𝑫  (        𝑷  𝒉)   𝑨𝑳 𝑬  
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For example, if both n4 and n5 in p2 fail but n6 succeeds, then 

FailDep(p2)=FALSE. 

 

2- In case of a vital path, if the execution control reaches the last node on a vital 

path, this means that the path has not failed due to failure of a preceding vital 

node on the path (from Def.5.1), and thus: 

Def. 5.4: 

       (        )          𝑷  𝒉 𝑰         

                                                        𝑷  𝒉        𝑨𝑰𝑳𝑬𝑫 

 

For example, if execution reaches n9 in p3, it is not possible that n7 has failed and 

has consequently caused the failure p3 by propagation rule. 

 

Therefore, we can conclude that (a) from Def.5.2, if the successful completion of a node 

triggers a completion event of its superior path then the node is the last in the path, and 

(b) from Def.5.3 and Def. 5.4, if the last node in a path succeeds then the path cannot 

possibly have failed. Hence, the successful completion of a node that triggers a 

completion event for the path (i.e. it is the last node in path), and also triggers the 

successful completion of its enclosing path: 

 

Def. 5.5: (successful completion of a vital and non-vital path)1 
       (𝒏   )  𝑪   𝑳𝑫  (        𝑷  𝒉)  𝑻  𝑬 

                                                                                  (        𝑷  𝒉) 
 

 

Failure of last node in a vital path can lead to either a successful completion or a failure 

of its superior path depending on the vitality of the node as follows: 

1- Vital node: from Def.5.1 we conclude that the failure of vital last node will fail its 

superior (e.g. failure on n3 in p1).  
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2- Non-vital node: failure of a non-vital last node on a vital path will trigger a 

completion event of its superior path (from Def. 5.2), and implicitly indicates that 

no vital node has failed on the path (from Def.5.1). Hence, we conclude that a 

failure of the last non-vital node on a vital path will succeed its superior path (e.g. 

failure of n9 on p3 will still result in succeeding p3).  

Def. 5.6: (successful completion of a vital path)2 

  𝒏    𝑰             (𝒏   )           𝑷  𝒉 𝑰         
                                𝑪   𝑳𝑫  (        𝑷  𝒉)  𝑻  𝑬  
                                                                             (        𝑷  𝒉)  
 

Failure of last node in a non-vital path can lead to either a successful completion or a 

failure of its superior path, depending on the failure dependency evaluation of the path as 

follows: 

1- If all the nodes on the path fail, then the path fails. Hence: 

Def. 5.6: (failure of a non-vital node) 

    𝑫  (   𝒉)  𝑻  𝑬       𝒉 𝑰            (   𝒉)  

 

For example, when n6 in p2 fails where n4 and n5 has failed as well, then p2 fails. 

 

2- If no failure event is fired for the path then the path succeeds. Hence: 

 

Def. 5.7: (successful completion of a vital path)3 

    (𝒏   )      𝒉 𝑰        
 𝑪   𝑳𝑫  (        𝑷  𝒉)  𝑻  𝑬  
                                    𝑫  (        𝑷  𝒉)   𝑨𝑳 𝑬  
                                                          (        𝑷  𝒉) 
 

For example, when n6 in p2 fails but FailDep(p2)=FALSE, then p2 succeeds 

because some nodes in p2 have succeeded. 
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As a result, failure events raised by failure dependencies are only obvious for non-vital 

paths and hence are only defined for non-vital paths. However, completion dependencies 

are defined for both, vital and non-vital paths. 

 

Exclusive scopes in COMPMOD are a broader form of sequencing where only one out of 

two or more exclusive paths is required to succeed. The successful completion of an 

exclusive scope is triggered by the successful completion of one of its exclusive paths, 

and therefore exclusive scopes are not defined with completion dependencies.  

 

Def. 5.8: (successful completion of exclusive scope) 

       (   𝒉)     𝒉 𝑰 𝑬                 (             ) 

 

The failure of an exclusive scope is triggered by the failure of its last execution path 

which intuitively indicates that all paths within the scope have failed. Note that the last 

exclusive path in the scope has no alternative. 

 

Def. 5.9: (failure of exclusive scope) 

    (   𝒉)     𝒉 𝑰 𝑬               𝒉 𝒉  𝑨    𝒏       

                                                           (             ) 
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5.2.2 Concurrency Control 

 

Unlike execution paths, the vitality of scope nodes in COMPMOD is assigned by 

specification. In section 4.3.5, we classified concurrent scopes into three cases with 

respect to vitality of the scope vs. the vitality of its encapsulated paths. The vitality of a 

scope does not reflect the vitality of its encapsulated components and vice-versa; hence, 

we define the operational semantics of concurrent scopes with respect to the vitality of 

their concurrent paths and irrespectively of the vitality of the enclosing scope.  

  

A concurrent scope encapsulates execution paths that are executed concurrently, and their 

execution is synchronized at the join end of the scope. Activation dependencies formally 

define the split point of the scope whereas the synchronizer of the scope is formally 

defined through completion and failure dependencies.  

 

A concurrent scope starts its execution at the split point of the scope by activating all its 

concurrent paths 9 . All paths are executed concurrently and each path follows the 

sequence semantics discussed in Section 5.2.1 regarding their successful completions and 

failure semantics.  

 

A completion dependency ComplDep() fires a completion event when all concurrent 

paths have finished their executions either by failing or succeeding. A failure dependency 

FailDep() fires a failure event when all concurrent paths fail to complete (in the case of 

OR scope this means all concurrently enabled paths). Before we introduce our failure and 

                                                 
9 Enabled parallel paths in case of OR-scopes 
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successful completion semantics, two important issues regarding concurrent semantics 

are discussed, namely, deadlocks and propagation policy. 

 

Deadlocks: in the context of concurrent executions, there are some conditions under 

which the behavior of concurrent paths could lead to deadlock situations because the 

behavior of the synchronizer becomes undefined. We list these conditions and show how 

they are prevented thorough our proposed operational semantics. A synchronizer will 

deadlock if: 

1- In a concurrent (AND/OR) scope, one or more than one of the activated 

concurrent paths do not respond with failure or completion events caused by a 

latency in response from a node on the path. However, failure assumption 3 

(Chapter 4, section 4.7.2) states that a failure is triggered for a node when the 

execution time of a node exceeds its timeout constraints. Therefore a path is 

always guaranteed to finish its execution and this type of deadlock is relieved. 

2-  In an OR scope, a scope activates but none of the conditions associated with its 

encapsulated paths evaluates to TRUE. In this case, the behavior of the 

synchronizer will deadlock. Therefore, we assume that an activated OR scope 

with no enabled paths is a failed scope and define its failure dependency 

accordingly.   

 

Propagation policy: it is a propagation policy of COMPMOD that failure of a vital 

concurrent path will fail its superior scope: 
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Def. 5.10: (propagation of vital path failure) 
   𝒉 𝑰           𝒉 𝑰   𝒏     𝒏       (   𝒉) 
                                                                                      𝑨𝑰𝑳𝑬𝑫   

 

In order to define successful completion and failure criteria for concurrent scopes, we 

must consider the three possible amalgamations of encapsulated paths (see Figure 5.2 for 

illustrations):  

 

 

Figure 5.2 Concurrent scope cases with respect to vitality  

of encapsulated paths  

 

Case 1: The scope encapsulates only vital paths. In this case, the scope successfully 

completes if (a) the scope completes its execution (i.e. ComplDep(scope)=TRUE) and (b) 

all paths succeed. From Def. 5.1, we conclude that the successful completion of all 

concurrent paths implies that scope.state≠FAILED. For illustration, scope1 succeeds only 

if both p1 and p2 complete their executions (i.e. CompLDep(scope1)=TRUE) and they 
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both succeed. Since p1 and p2 are both vital, the possibility of scope1 failing by 

propagation is not the case, hence it is guaranteed that scope1.state≠FAILED. 

  

Case 2: The scope encapsulates at least one vital path and at least one non-vital path. In 

this case, the scope succeeds if it completes (i.e. CompLDep(scope)=TRUE) and all vital 

paths complete (i.e. scope.state≠FAILED) and all non-vital paths complete either by FAIL 

or SUCCEED (i.e. CompLDep(scope)=TRUE).  As an example, in scope2, when p1 and p2 

complete their execution, then CompLDep(scope2)=TRUE. If p1 succeeds then scope2 

cannot possibly fail by propagation (i.e. scope2.state≠FAILED).  The final execution state 

of p2 (since it is non-vital) does not affect the succeeding of scope2. 

 

Hence: 

Def. 5.11: (successful completion of synchronized concurrent paths, cases 1,2)  
𝑪   𝑳𝑫  (     )  𝑻  𝑬                𝑨𝑰𝑳𝑬𝑫         (     ) 

  

Note that in case 1 and case 2, the successful completion of the scope ensures the 

successful completion of its vital paths and thus the following implication holds: 

       (     )       𝑫  (     )   𝑨𝑳 𝑬 

 

Case 3: The scope encapsulates only non-vital paths. In this case, the scope succeeds if it 

is completed (i.e. CompLDep(scope)=TRUE) and no failure event is fired for the scope 

and (i.e. FailDep(scope)=FALSE). For example, scope3 succeeds when both p1 and p2 

complete (i.e. CompLDep(scope3)=TRUE) but at least p1 or p2 succeeds  (i.e. 

FailDep(scope3)=FALSE).  
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Hence: 

Def. 5.12: (successful completion of concurrent paths, case3)  
    𝑫  (     )   𝑨𝑳 𝑬   𝑪   𝑳𝑫  (     )  𝑻  𝑬 

                                                                             (     )  
 

Note that in case 3, inexistence of vital paths within the scope ensures that the scope 

could not fail through the propagation of a failure event, and thus s            

 𝑨𝑰𝑳𝑬𝑫 holds. 

 

Therefore, when a completion event is fired for a concurrent scope, if the scope has not 

been failed by a propagation rule (explicitly covers case 1, 2, and implicitly 3) and there 

is no failure event fired for the scope (explicitly covers case 3, and implicitly 1 and 2), 

then the scope succeeds. Hence: 

Def. 5.13: (successful completion of concurrent scope)  
𝑪    𝑫  (     )  𝑻  𝑬      𝑫  (     ) 𝑨𝑳 𝑬  
                                                                          𝑨𝑰𝑳𝑬𝑫 

                                                                                      (     ) 
 

Failure of a concurrent scope is triggered in two distinct ways: 

1- Prompted by the assessment of the propagation policy (Def. 5.10): cases 1,2. For 

example, failure of p1 in scope1 will fail scope1 by propagation. 

2- Failure event raised by a failure dependency (i.e. FailDep(scope)=TRUE ): case3. 

 

It could be the case that a scope of type case 2 encapsulates one vital path and one or 

more non-vital paths where all non-vital paths fail, and the vital-path fails but was the last 

path to synchronize, in this case two failure events are triggered for the scope, one by 

propagation and one by satisfaction of the failure dependency of the scope. Therefore, 
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when a failure event is fired for a concurrent scope, and if the state of the scope is not 

failed by a propagation of failure event, the scope is failed. Hence: 

Def. 5.13: (failure of a concurrent scope)  
    𝑫  (     )  𝑻  𝑬                𝑨𝑰𝑳𝑬𝑫      (     ) 

 

To illustrate Def. 5.13 we assume the following completion scenarios for p1 and p2 in 

scope2. We assume that p2 fails first. p2’s failure will not affect the state of scope2 since 

p2 is not vital. We assume that the vital path p1 fails next. Two failure actions will take 

place as a consequence of p1’s failure. The state of scope2 will change to FAILED by the 

propagation rule. At the same time FailDep(scope2) will signal TRUE since all 

encapsulated paths of scope2 have failed. Hence, the general definition of failure 

semantics Def. 5.13, checks first that scope state is not already FAILED to avoid failing 

the scope twice.  

 

Note that a similar argument based on enabled paths concurrent paths can be made for 

completion, successful completion, and failure semantics.  

5.3 Control Management Mechanism 

 

The control flow of the model is automated through a series of activation and completion 

events/actions as depicted in Control Charts 1 through 7. We discuss the activation and 

completion semantics in the following sub sections and relate to the relevant 

dependencies and policies.  
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5.3.1 Activation Semantics 

 

Activation dependencies are defined for execution paths and nodes (Table 5.1). A 

component activates according to the following hierarchical control structure:  

1- Activation of LRT triggers an activation event for the main execution path 

(ActD.1). 

2- Activation of a path triggers an activation event for the first node in the path 

(ActD.2). 

3- Successful Completion10 of a node triggers an activation event for the succeeding 

node (if any) (ActD.3). 

4- Failure11 of a non-vital node triggers an activation event for the succeeding node 

(if any) (ActD.3). 

5- Activation of an AND-scope triggers activation events for all concurrent paths 

within the scope (ActD.4). 

6- Activation of an OR-scope triggers activation events for all enabled concurrent 

paths within the scope (ActD.5). 

7- Activation of an XOR-scope triggers an activation event for the first path in the 

scope (ActD.4).  

8- Compensation completion12 of an exclusive path, that has an alternative, triggers 

the activation of the next exclusive path (ActD.6). 

                                                 
10 Successful completion dependencies and policies are discussed in section 5.3.2. 
11 Failure semantics are discussed in section 5.4.1 
12 A compensation completion event  signals that the compensation of a path has 

completed (Chapter 6, section 6.2.2.2) 
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In order to automate activation events, we apply activation policies, listed in Table 4.2. 

Activation Policies assess activation events and mark the execution state for a component 

as ACTIVATED. ActR.3 ensures that components are only activated if their superior is 

activated. ActR.1 is triggered by a system generated internal activation event of the LRT 

and ActR.2 activates the main execution path.  

 

Dep # Dependency Component  

ActD.1 𝑨  𝑫  (  )  𝑳 𝑻       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 Main path 𝑝  
ActD.2 𝑨  𝑫  (         )     𝒉       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 First node in a path 
ActD.3 𝑨  𝑫  (𝒏    )   

(𝒏             𝑪𝑪𝑬𝑬𝑫𝑬𝑫)    (  𝒏     𝑰          𝒏          
  𝑨𝑰𝑳𝑬𝑫 )    

Sequential Nodes : 
𝑛𝑜𝑑𝑒  successor of 
𝑛𝑜𝑑𝑒   

ActD.4 𝑨  𝑫  (   𝒉)                 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 1- Concurrent paths 
of AND scope  
2- First path in XOR 
scope 

ActD.5 𝑨  𝑫  (   𝒉)                 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫      𝒉 𝑰 𝑬𝒏      Concurrent paths  of 
OR scope  

ActD.6 𝑨  𝑫  (   𝒉 )   
   𝒉          𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫 

Paths 2..m in XOR 
scope where m>=2 

Table 5.1 Activation Dependencies 

 

 

Rule# Policy Component  
ActR.1 ON “activation event of LRT” 

IF   LRT.state=NOT-ACTIVATED 
DO activate(LRT) 

LRT  

ActR.2 ON ActDep(𝑝 ) 
DO activate(𝑝 ) 

Main execution 
path P0 

ActR.3 ON ActDep(component) 
IF   component.superior.state=ACTIVATED and    

                  component≠p0 
DO activate(component) 

atomic node, 
scope, and 
path≠p0 

Table 5.2 Activation Policies  

 

The activation mechanism is depicted in Control Charts 1-3. Note that activation of a 

succeeding node in a sequence depends on the completion state of its predecessor node as 
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is illustrated in charts 4 and 7 (successful completion of node and failure of non- vital 

node respectively).               

                                   

   

        Control Chart 1. Activation of LRT                Control Chart 2. Activation of Path 

 

 

 

Control Chart 3. Activation of Node 
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5.3.2 Completion Semantics 

 

In this section, we relate our discussion to the completion dependencies and policies 

listed in (Tables 5.3 and 5.4) and control charts (4-7).   

 Atomic nodes and exclusive scopes are not defined with completion dependencies; 

instead, their successful completion event is assessed by completion policies. Completion 

dependencies are explicitly defined for execution paths and concurrent scopes. A 

completion event signals that the path/scope has ended its execution. Subsequently, a 

completion policy concludes if the path/scope has successfully completed and hence 

marks the path/scope as SUCCEEDED.  

 

 

 

Dep # Dependency Component  
CompLD.1 𝑪   𝑳𝑫  (   𝒉 )   

                 𝑪𝑪𝑬𝑬𝑫𝑬𝑫                   𝑨𝑰𝑳𝑬𝑫) 
 

Path 

CompLD.2 𝑪   𝑳𝑫  (     )   

⋀ (   𝒉          𝑪𝑪𝑬𝑬𝑫𝑬𝑫     𝒉         𝑨𝑰𝑳𝑬𝑫)

     

 

AND scope with m 
concurrent paths 

CompLD.3 𝑪   𝑳𝑫  (     )   

⋀

(   𝒉  𝑰 𝑬𝒏        

(
   𝒉          𝑪𝑪𝑬𝑬𝑫𝑬𝑫  

   𝒉         𝑨𝑰𝑳𝑬𝑫
))

     

 

OR scope with m 
concurrent paths 

Table 5.3 Completion Dependencies 
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Rule# Policy Component  
CompLR.1 ON “successful completion event of atomic node” 

DO succeed(node) 
Atomic node 

CompLR.2 ON succeed(node) 
IF   CompLDep(node.superior)=TRUE 
DO succeed(node.superior) 

Vital and non-
vital path with 
succeeded last 
node 

CompLR.3 ON succeed(path) 
IF   path=𝑝  
DO succeed(LRT) 

LRT 

CompLR.4  ON succeed(path) 
IF   path.IsExclusive=TRUE 
DO succeed(path.superior) 

Exclusive scope 

CompLR.5 ON CompLDep(scope) 
IF   scope.state≠failed and 
       FailDep(scope)=FALSE 
DO succeed(scope) 

Concurrent 
scope 

CompLR.6 ON fail(node) 
IF   ¬node.IsVital  and  node.superior.IsVital and 
CompLDep(node.superior)=TRUE 

           DO succeed(node.superior) 

vital path with 
failed non-vital  
last node 

CompLR.7 ON fail(node) 
IF   ¬node.IsVital  and  ¬node.superior.IsVital and 
CompLDep(node.superior)=TRUE and 
FailDep(node.superior)=FALSE 

           DO succeed(node.superior) 

non-vital path with 
failed non-vital  
last node 

Table 5.4 Completion Policies  

 

The completion and successful completion events of a component have a transactional 

impact on its interconnected components and are modelled as follows: 

1. When an atomic node is activated, the system awaits for an internal event 

indicating its failure or completion (chart 3). An internal completion event for an 

atomic node signals the successful completion of the node. The completion event 

is assessed by the completion policy (CompLR.1), and the node is marked as 

SUCCEEDED. 

2. Successful completion of a node (chart 4) has an impact on (a) the activation of a 

succeeding node on the same path if any, or (b) on the completion of its superior 

path if the node was the last node on the path. 
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3. Successful completion of a last node (chart 4) in a path has an impact on the 

completion of its superior path. When the last node finishes its execution, a 

completion event is fired for the path (CompLD.1) and the path is marked 

succeeded by policy (CompLR.2).  

 

Control Chart 4. Successful Completion of Node 

 

4. Successful completion of the main execution path (chart 5) triggers the successful 

completion of the LRT (CompLR.3).  

5. An exclusive scope succeeds (chart 5) when one of its exclusive paths succeed 

(CompLR.4). 

6. Concurrent paths are synchronised (chart 5) through a completion event that is 

fired for an AND-scope (ComplD.2) or OR-scope (CompLD.3). 
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Control Chart 5. Successful Completion of Path 

 

7. A concurrent scope successfully completes (chart 6) when a completion event has 

been fired for the scope and no failure event is raised for the scope (CompLR.5).  

8. The failure of a non-vital last node (Chart 7) leads to successful completion of its 

superior path in two cases: (1) if it is encapsulated by a vital path (CompLR.6), or 

(2) if it is encapsulated by a non-vital path and no failure event was fired for the 

path (CompLR.7). 
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Control Chart 6. Completion of a Concurrent Scope 

 

 

Control Chart 7. Failure of non-Vital Node 
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5.4 Failure-Handling Mechanism 

 

COMPMOD applies a recursive method for propagating vital failure events through the 

recursive hierarchical structure of LRT components. Propagation is applied in parallel 

with policy-based actions in order to reach a consensus about the execution state of LRT 

components and the LRT itself. 

 

Within the context of the proposed hierarchical structure, the recursive failure propagation 

mechanism entails a combination of three types of propagation method:  

 

1. Bottom-up propagation originates from failure of a vital atomic node and 

propagates up the hierarchy to its immediate superior path. If the failed atomic node 

exists on the main execution path 𝑝 , the LRT fails.  

2. Upwards recursive propagation originates from failure of a scope node by 

repeating a bottom-up propagation to its immediate superior execution path in 

recursive fashion until a non-vital component is reached in the hierarchy or until the 

failure reaches the root of the hierarchy structure (𝑝 ). 

3. Downwards recursive propagation originates from a failure of a scope node (vital 

or non-vital) by repeating a top-down propagation to its immediate activated paths 

until the propagation reaches all active atomic nodes within the failed scope’s sub-

hierarchy. This represents a mean of forcing failure/cancellation of concurrently 

running nodes in a failed scope. Force fail only applies to concurrent scopes and in 
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4. our model only applies to AND and OR scopes since a failed XOR is a result of a 

failure of all its exclusive paths. 

Failure and force-fail control charts (7-11)  illustrate the failure and force-fail mechanism 

linked to failure and dependencies and policies (Tables 4.5-4.8).  In particular, charts 8 

and 10 illustrate the main propagation mechanism implemented by COMPMOD. Control 

charts include compensation mechanisms that are discussed and illustrated in chapter 6.  

 

Failure propagation is always initiated by the failure of a vital (chart 8) atomic node, and 

propagates recursively through vital component ancestors in the hierarchy structure to stop 

when a non-vital ancestor component is reached or when the root of the hierarchy is 

reached. As for Top-down propagation of failures, both vital and non-vital active 

components are force-failed. If a vital failure propagates through the hierarchy structure of 

the LRT and reaches the root of the hierarchy 𝑝 , the LRT fails.  
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Control Chart 8. Failure of a Vital Node 

 

The failure mechanism also handles failures of non-vital components. Failure of a non-

vital atomic node (chart 7, section 5.3.2) could fail its enclosing path if the enclosing path 

was a non-vital path, and the node is the last node in the path, and all other nodes in the 

path (if any13) have failed. Failure of a non-vital path (Chart 9) will only fail its enclosing 

scope under two conditions: (1) it is an exclusive path (2) it has no alternative, i.e. it is the 

last exclusive path in the scope.  

 

                                                 
13 If the path is atomic (i.e. contains one node), then the node is considered as the first 

node and last node. 
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Control Chart 9. Failure of non-vital Path 

 

In the following subsections, the semantics of failure and force fail semantics are 

discussed. 

 

5.4.1 Failure Semantics 

 

Failure semantics are formalized through failure dependencies (Table 5.6) and failure 

policies (Table 5.7) and they are conceded as follows:   

1- Failure events for atomic nodes are fired internally by the system. When a failure 

event is fired for an atomic node, the event is assessed by failure policy (FailR.1) 

and the node is marked as FAILED. 
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2- Failure of a vital node triggers the propagation of the failure event to its superior 

path and subsequently the superior path fails (FailR.2) 

3- A failure event is fired for a non-vital path iff all its encapsulated nodes fail 

(FailD.1), the failure event is assessed by (FailR.6) and the state of the path is 

marked FAILED. 

4- Failure of the main execution path triggers the failure of the LRT (FailR.3). 

5- Failure of an exclusive path that has alternative initiates a compensation process 

for the path. This event is assessed by the compensation policy (CompR.1) and is 

explained in (Chapter 6, section 6.2.3).  

6- Failure of an exclusive path that has no alternative triggers the failure of its 

encapsulation scope (FailR.4). 

7- Failure of a vital concurrent path propagates the failure event to its enclosing 

scope (FailR.5). 

8- A failure event is fired for a concurrent AND scope (FailD.2) if all its enclosing 

concurrent paths fail to complete. 

9- A failure event is fired for a concurrent OR scope (FailD.3) if all its enclosing 

enabled concurrent paths fail to complete or the scope has been activated but none 

of its enclosing paths has been enabled. 

10- When a failure event is fired for a concurrent scope, if the scope has not been 

failed as a result of bottom-up failure propagation from within the scope, the 

scope is marked failed (FailR.7).  
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Dep # 

Dependency Component  

FailD.1     𝑫  (   𝒉)   

( ⋀ 𝒏   𝑳     𝒏           𝑨𝑰𝑳𝑬𝑫

      

) 

Non-Vital path 

FailD.2     𝑫  (𝑨 𝑫     )    
⋀ (   𝒉          𝑨𝑰𝑳𝑬𝑫     )  

AND scope with 
m paths 

FailD.3     𝑫  (𝑶      )    
(⋀ (   𝒉  𝑰 𝑬𝒏          𝒉          𝑨𝑰𝑳𝑬𝑫     ))   
(𝑶             𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫  (⋀    𝒉  𝑰 𝑬𝒏           

 𝑨𝑳 𝑬))  

OR scope with m 
paths 

Table 5.6 Failure Dependencies  

Rule# Policy Component  
FailR.1 ON “failure/cancellation event  for atomic node”  

DO fail(node)  
Atomic node 

FailR.2 ON  fail(node)  
IF    node.superior.state=ACTIVATED and 
       node.IsVital        
DO fail(node.superior) 

vital path 
(bottom-up 
propagation ) 

FailR.3 ON   fail(path) 
IF     path=𝑝  
DO  fail(LRT) 

LRT 

FailR.4 ON  fail(path) 
IF    ¬path.HasAlternative and path.IsExclusive 
DO fail(path.superior) 

Exclusive scope 

FailR.5 ON  fail(path) 
IF    path.IsVital=TRUE and 
       Path.IsConcurrent 
DO fail(path.superior) 

concurrent scope  
(bottom-up 
propagation ) 

FailR.6 ON FailDep(path) 
DO fail(path) 

 non-vital path  

FailR.7 ON FailDep(scope) 
IF   scope.state≠failed  
DO fail(scope) 

Concurrent scope  
 

Table 5.7 Failure Policies  

 

5.4.2 Force-Fail semantics 

 

Force-fail is a counterpart for cancellation. As illustrated in chart 8, when a vital 

concurrent path fails, its immediate outer scope fails. Force-fail dependencies and 

policies force all active paths within a failed concurrent scope to cancel their executions, 

and subsequently all active nodes on paths are forced to fail.  
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Force-fail dependencies (Table 5.8) are defined between components and their immediate 

superiors, such that failure of an activated component’s superior will force the component 

to fail.  

Dep # Dependency Component  
FFailD.1          𝑫  (𝒏   )  𝒏          𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫      𝒉      

  𝑨𝑰𝑳𝑬𝑫 
Where path=node.superior 

Atomic 
node/scope 
 

FFailD.2          𝑫  (   𝒉)     𝒉       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫              
  𝑨𝑰𝑳𝑬𝑫 

Where scope=path.superior 

𝑝 𝑡   𝑝   

FFailD.3          𝑫  (  )  𝑳 𝑻        𝑨𝑰𝑳𝑬𝑫 Main path 𝑝  

Table 5.8 Force-fail Dependencies 

 

Force-fail policies (Table 5.9) automate the propagation of Force-fail events (chart 10) in a 

downwards recursive fashion through the hierarchy structure of the WF.  

 

Rule# Policy Component  
FFailR.1 ON FFailDep(node) 

IF   node.type=ATOMIC 
DO abort(node)  

Atomic node- 
Propagation  
 

FFailR.2 ON FFailDep(node) 
IF   node.type=SCOPE 
DO fail(node)  

scope -Propagation 
 

FFailR.3 ON FFailDep(path)  
DO fail(path)  

Path- Propagation 
 

FFailR.4 ON “cancellation event of LRT” 
IF   LRT.State=ACTIVATED 
DO fail(LRT)  

LRT 

Table 5.9 Force-fail Policies 

 

Force-fail propagation originates from a failure of concurrent scope, and triggers the 

failure of all its encapsulated active components in the following  recursive mechanism

1- A force-fail event is fired for all activated paths within a scope if the superior 

scope has failed (FFailD.2). 
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2- A force-fail event of a path is assessed by (FFailR.3) policy and the path is 

marked FAILED. 

3- A force-fail event is fired for an activated node (atomic/scope) if its superior path 

has failed (FFailD.1).  

4- A fired Force-fail event of an atomic node is assessed by (FFail.R.1) policy and 

the node is aborted. 

5- A fired Force-fail event of a scope node is assessed by (FFailR.2) policy and 

scope is failed. 

 

Control Chart 10. Force-Fail Scope 

 

 

Cancellation of the LRT by the end-user is supported by COMPMOD (Chart 11). When a 

cancellation event is fired for the LRT, the event is assessed by the (FFailR.4) policy, and 

the LRT is marked as failed. Failing the LRT triggers a force-fail event for the main 

execution path (FFailD.3) which consequently leads to a force-fail event fired for the 



Chapter 5. Management Mechanism                                                                              

 

120 

 

activated node on 𝑝  at the time the cancellation of LRT occurred. Following the force-

fail mechanism mentioned above, if the activated node is atomic, the node is aborted. If 

the activated node is a scope, the activated components within the scope are force-failed in 

a downwards recursive propagation fashion, following the mechanism illustrated in chart 

10. 

 

 

Control Chart 11. Force-Fail LRT 

5.5 Examples 

 

5.5.1 Control Flow Dependencies of OP Case Study  

 

In section 4.4, we depicted the workflow representation and the transitional attributes of 

our OP case study (Figure 4.5). In (Table 5.10), we define the control flow dependencies 

for OP with respect to workflow semantics and transactional dependencies of 

COMPMOD which have been discussed in the previous sections.   
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 ActDep ComLDep FailDep ForceFailDep 

P0 OP.state= 

ACTIVATED 

scope1.State=SUCCEEDE

D   scope1.State=FAILED 

By propagation OP.state=FAILED 

SALES po.State= 

ACTIVATED 

Internal event Internal event SALES.state=ACTIVATED 

  po.state=FAILED 

Scope1 SALES.State= 

SUCCEEDED 
(p1.state=SUCCEEDED   

p1.state=FAILED)   

(p2.state=SUCCEEDED   

p2..state=FAILED)   

(p3.state=SUCCEEDED   
p3.state=FAILED) 

p1.state=FAILED   

p2..state=FAILED   
p3.state=FAILED 

scope1.state=ACTIVATED  

  po.state=FAILED 

p1 scope1.State= 
ACTIVATED 

CHARGE.State= 

SUCCEEDED   
CHARGE.State= FAILED 

By propagation p1.state=ACTIVATED 

  scope1.state=FAILED 

p2 scope1.State= 

ACTIVATED 

OUTSOURCE _ANALYSIS 

.State=SUCCEEDED   
OUTSOURCE 

_ANALYSIS.State= 
FAILED 

OUTSOURCE 

_ANALYSIS.State= 

FAILED 

p2..state=ACTIVATED  

  scope1.state=FAILED 

p3 scope1.State= 

ACTIVATED 

CHECK_GOODS.State= 

SUCCEEDED   
CHECK_GOODS.State= 

FAILED 

By propagation p3.state=ACTIVATED  

  scope1.state=FAILED 

CHARGE  p1.State= 

ACTIVATED 

Internal event Internal event CHARGE.state= 

ACTIVATED   
p1.state=FAILED 

OUTSOURCE 

_ANALYSIS  

p2.State= 

ACTIVATED 

Internal event Internal event OUTSOURCE _ANALYSIS 

.state=ACTIVATED   
p2..state=FAILED 

DELIVERY p2.State= 
ACTIVATED 

Internal event Internal event DELIVERY.state= 

ACTIVATED   

p2..state=FAILED 

CHECK_GOODS 

 

DELIVERY.State

= SUCCEEDED 

Internal event Internal event CHECK_GOODS.state= 

ACTIVATED   
p3.state=FAILED 

Table 5.10 Control flow dependencies of OP case study 

 

5.5.2 E-Booking Example 

 

We demonstrate our management and failure handling mechanism on an E-booking 

example as depicted in Figure 5.3. This example illustrates how an LRT can succeed in 

the case of non-vital node failures. In this scenario, there is a need to book a flight, a 

hotel room and a car for a specific period as received by the BookingOrder. It is 

necessary to find a flight booking and a hotel room for the requested dates, and thus the 

nodes Flight and Hotel are assigned as vital nodes. It is desirable for the MakeBookings 

scope that a car rental is booked for the same dates, but not necessary. In other words, if 
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car rental is not available, the MakeBooking is considered to have succeeded from a 

business point of view, and hence it is assigned as a non-vital node. The successful 

completion of the nodes BookingOrder, MakeBookings, and Payment are necessary for 

the successful completion of the E-booking LRT and thus they are all assigned as vital by 

specification. Note that p1 and p2 in MakeBookings scope are vital, and p3 is non-vital by 

evaluation.  The main execution path encloses three nodes:  

  p0.nodeList=[BookingOrder,MakeBookings,Payment]. 

 

Figure 5.3 E-booking Example 

 

Activation of the LRT (ActR.1) triggers an activation event for p0 (ActD.1). Activation of 

a path triggers the activation of the first node BookingOrder (ActD.2). The system waits 

for the BookingOrder to finish its execution (Control Chart 3). We assume that a 

completion event has been fired for the node and the BookingOrder is marked 

SUCCEEDED (CompLR.1). Successful completion of BookingOrder (Chart 4) activates 

the MakeBooking scope (ActD.3) since BookingOrder is not the last node on p0. 
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Activation of MakeBooking, fires activation events (ActD.4) for p1,p2, and p3 

encapsulated by MakeBooking and they are all activated by (ActR.3). Subsequently and 

in the same manner illustrated above, the first nodes on the concurrent paths are 

activated; Flight, Hotel and Car  are executed concurrently.  Assume that Flight 

succeeded and Hotel succeeded and the system is waiting for the Car node to finish its 

execution. Note that p1 and p2 has succeeded by (CompLR.2). To demonstrate how the 

completion and successful completion of concurrent scopes are dealt with in the case of 

non-vital failures, we assume that Car node fails to complete. Following Chart 7, failure 

of the non-vital Car node fires a failure event for p3 (FailD.1) and thus p3 fails (FailR.7). 

Following chart 9, failure of p3 fires a completion event for MakeBookings since it is  the 

last path to complete, and hence CompLDep(MakeBookings)=True. Following chart 6, 

MakeBookings has not failed, since all its vital components have succeeded and there is 

no failure event fired for the path since p1 and p2 has succeeded; hence the 

MakingBookings is succeeded by the completion policy (CompLR.5). Successful 

completion of MakeBookings activates Payment. If we assume that Payment succeeds, 

then a completion event is fired for p0 (CompLD.1) and policy (CompLR.2) succeeds p0. 

Following chart 5, successful completion of the main execution path succeeds the LRT 

by (CompLR.3). 

 

5.5.3 Nested LRT Sample 

 

To further illustrate the propagation mechanism, we will consider the sample LRT1 

presented in Figure 5.4.  
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Figure 5.4 An execution instance of LRT1 in Figure 4.2 

 

Assume an execution instance with the following states of its components:  n1, n2, scope1 

and scope2 have succeeded, and 𝑠𝑐𝑜𝑝𝑒  is activated. 𝑛   is a vital node and has failed to 

complete. Table 5.11 shows 𝑠𝑐𝑜𝑝𝑒 ’s sub hierarchy tree attribute values and execution 

states when the node 𝑛   failure event has been fired, and we show how the failure 

propagation algorithm is employed. 

Component  Type vital Immediate 
superior 

Has 
Alternative 

Execution 
state 

𝑠𝑐𝑜𝑝𝑒  AND 
scope 

✓ 𝑝  - activated 

𝑠𝑐𝑜𝑝𝑒  𝑝  path ✓ 𝑠𝑐𝑜𝑝𝑒   activated 

𝑠𝑐𝑜𝑝𝑒  𝑝  path  𝑠𝑐𝑜𝑝𝑒   succeeded 
𝑠𝑐𝑜𝑝𝑒  𝑝  path ✓ 𝑠𝑐𝑜𝑝𝑒   activated 

𝑛   node  𝑠𝑐𝑜𝑝𝑒  𝑝  - succeeded 
𝑛   node ✓ 𝑠𝑐𝑜𝑝𝑒  𝑝  - failed 

𝑠𝑐𝑜𝑝𝑒    AND 
scope 

✓ 𝑠𝑐𝑜𝑝𝑒  𝑝  - activated 

𝑠𝑐𝑜𝑝𝑒    𝑝  path ✓ 𝑠𝑐𝑜𝑝𝑒     activated 

𝑠𝑐𝑜𝑝𝑒    𝑝  path ✓ 𝑠𝑐𝑜𝑝𝑒     activated 

𝑠𝑐𝑜𝑝𝑒    𝑝  path ✓ 𝑠𝑐𝑜𝑝𝑒     succeeded 

𝑛   node ✓ 𝑠𝑐𝑜𝑝𝑒    𝑝  - activated 

𝑛   node ✓ 𝑠𝑐𝑜𝑝𝑒    𝑝  - activated 

𝑛   node ✓ 𝑠𝑐𝑜𝑝𝑒    𝑝  - succeeded 

Table 5.11 Execution Instances of        
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Following the propagation mechanism in (Charts 8 and 10) and applying the propagation 

mechanism on scope3’s sub hierarchy tree (Figure 5.5), failure of 𝑛   will fail its superior 

path 𝑠𝑐𝑜𝑝𝑒  𝑝 . This is not the main execution path, and does not have an alternative, 

since it is a concurrent. 𝑠𝑐𝑜𝑝𝑒  𝑝  is vital by evaluation, since it encapsulates vital node  

𝑛  . Therefore, the immediate scope of  𝑠𝑐𝑜𝑝𝑒  𝑝  which is 𝑠𝑐𝑜𝑝𝑒  fails   𝑠𝑐𝑜𝑝𝑒 . is vital 

by specification, hence two actions take place: (a) the failure is propagated recursively one 

level up in the hierarchy to path 𝑝 . (b) Force fail is recursively propagated in top-down 

order to cancel all activated components encapsulated by 𝑠𝑐𝑜𝑝𝑒 . Failure of 𝑝  will fail 

LRT1 (FailR.3). Failure of 𝑠𝑐𝑜𝑝𝑒  will force fail all its activated paths. At this point of 

execution, 𝑠𝑐𝑜𝑝𝑒  𝑝  has already failed and 𝑠𝑐𝑜𝑝𝑒  𝑝  has succeeded while 𝑠𝑐𝑜𝑝𝑒  𝑝  is 

still activated and therefore is forced to fail. Force failing a path fails the activated node in 

that path. Therefore, activated 𝑠𝑐𝑜𝑝𝑒    is forced to fail.  𝑠𝑐𝑜𝑝𝑒    is a scope node and 

hence the force fail mechanism is recursively repeated one level down in the hierarchy to 

force fail 𝑠𝑐𝑜𝑝𝑒   ’s activated components in same manner as scope3’s activated 

components were forced to fail. 
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Figure 5.5 Scope3’s Sub-Hierarchy Tree  

 

In the above example, failure of a vital node 𝑠𝑐𝑜𝑝𝑒  on 𝑝  caused LRT1 to fail. Our 

management/compensation model applies a reliable mechanism that controls failure of the 

LRT in a designer specified order that reflects the business logic of the transaction. In case 

of force failing a scope that has un-activated components, these components can never 

activate, since their enclosing scope state is failed, ensuring the correctness of the model 

and avoiding activation of paths in failed scopes. 
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Chapter 6 

Compensation Mechanism 

 

 

 

 

 

 

 

 

6.1 Introduction 

 

The COMPMOD model supports two types of compensation modes: 

Partial compensation: where some compensation actions take place while the LRT is 

executing in its normal mode, i.e. the LRT state is activated. Partial compensation is 

applied to nodes, paths, and scopes in tolerance with failures and it primarily reflects WF 

semantics. 

 

Comprehensive Compensation:  when an explicit consensus is reached about the failure 

of the LRT, the LRT starts its global compensation applied to all successfully completed 

atomic nodes in a customized-order that is defined by the business process designer at 
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design time. Comprehensive compensation mainly reflects the compensation logic of the 

business process.  

 

In this chapter, we demonstrate our compensation mechanisms and show how they are 

automated through formal definitions of dependencies and compensation policies. 

 

6.2 Partial Compensation 

 

Partial compensation is triggered by failure of an exclusive path that has an alternative. 

To illustrate our partial compensation semantics, we consider sample LRT2 in (Figure 

6.1).  

 

Exclusive scopes encapsulate paths that alternate each other in execution such that only 

one path is allowed to succeed (e.g. paths p1, p2, and p3 in scope2). If an activated path 

has failed to successfully complete, which is mainly triggered by a failure of a vital node 

on the path or by failure of all its encapsulated nodes, then all its succeeded nodes (if any) 

are compensated. For example, assume that p1 in scope2 is activated and n3 and scope2.1 

have succeeded. We further assume that n11 is vital but has failed, this will fail and 

compensate p1 and consequently scope2.1 and n3 are compensated. Only when the failed 

path has completed its compensation actions is an activation event fired for its alternative 

path (ActD.6 and Charts 8 and 9 in Chapter 5). E.g. only when p1 in scope2 has finished 

its compensation, p2 can be activated. 
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Figure 6.1 Sample LRT2 

 

When compensating a path, the current state of its encapsulated nodes at the time the 

failure has happened is important in deciding on the compensating actions to be 

performed on these nodes, so we consider the following possible situations: 

 

1. The failed exclusive path could have nodes on the path that were succeeded, 

failed or not-activated (i.e. the failure occurred before the node has been 

activated). 

2. Nodes could be scopes, and hence, if the scope was activated and some tasks had 

been succeeded within the scope, then all succeeded work has to be compensated. 
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3. The path is an atomic path that encapsulates a single node, and its failure has 

caused failure of the path where the node may be atomic or scope. 

 

We adopt two widely used terminologies in Transaction Processing; Forward 

Compensation and Backward Compensation and give them a precise definition in 

COMPMOD.   

 

Forward compensation14 is used to refer to the compensation process of an exclusive 

path that has an alternative but failed to complete. Forward compensation starts by 

compensating the last node on the path, and completes when the first node on that path 

has completed its compensating actions. For example, in case p1 in scope2 has failed, then 

its compensation is performed in forward order. 

 

Backward compensation is used to refer to the compensation process of a scope node 

that has been previously succeeded or failed (i.e. some partial work could have been 

succeeded within the scope) and is formally defined for scopes that are contained within 

potentially compensable paths.  Backward compensation of a scope starts by 

compensating all its encapsulated paths concurrently in backward order. The backward 

compensation of each path is processed in the same manner as in forward order: that is, 

starting from last node and cascading compensation events along the nodes on the path 

until the first node on the path has completed its compensating actions. For example, if 

                                                 
14 We adopt the term from the sagas.  
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we assume that scope2.1 has succeeded but its enclosing path p1 is compensated, then 

compensation of scope2.1 is performed in backward order. 

  

A potentially compensable path is a path that can possibly, in case of tolerable failures 

and during the normal execution mode of the LRT, have some compensating actions 

applied to it. Hence, a forward compensable path (e.g. p1 in scope2) and a backward 

compensable path (a path within a backward compensable scope like p1 in scope2.1) are 

both potentially compensable paths. Analogously, a node is potentially compensable if it 

is encapsulated with a potentially compensable path. Thus, in COMPMOD, all potentially 

compensable components are defined with compensation dependencies. 

 

However, compensations of nodes on a compensating path are always performed in 

reverse order of their activations. Therefore, whether a path is in forward or backward 

compensation mode, the order by which nodes are compensated is always in reverse 

order of their activations.  

 

Based on the above discussion, we provide in the next sections a detailed description of 

partial compensation semantics. 

 

6.2.1 Compensational Attributes 

  

In order to define compensation dependencies, we provide an essential compensational 

attribute for LRT components, IsCompensable, and its value is assessed as follows:  
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1- The main execution path is not compensable since if it fails then its compensation 

is performed in customized order. 

   𝒉         𝒉 𝑰 𝑪    𝒏       𝑨𝑳 𝑬 

2- A path IsCompensable iff the path has an alternative. 

   𝒉 𝒉  𝑨    𝒏      𝑻  𝑬     𝒉 𝑰 𝑪    𝒏      𝑻  𝑬 

3- A scope node IsCompensable iff its superior path IsCompensable 

 
                   𝑰 𝑪    𝒏      𝑻  𝑬  

                                                                     𝑰 𝑪    𝒏       
 

4- A path that has no alternative IsCompensable iff its superior scope 

IsCompensable. This is the case of concurrent paths, and the last exclusive path in 

an exclusive scope. 

      𝑰 𝑪    𝒏      𝑻  𝑬          𝑰𝒏       𝒉  𝑨    𝒏      
                                           𝑰𝒏       𝑰 𝑪    𝒏      𝑻  𝑬 

 

To further illustrate the compensability attribute, we consider the sample LRT2 in figure 

6.1. In LRT2, scope1 and its encapsulated path are not compensable, since the scope is not 

encapsulated by a compensable path (p0.IsCompensable=FALSE). Paths p1 and p2 in 

scope2 are compensable since they both have alternatives. Scope2.1 and scope2.2 and their 

encapsulated paths are compensable since both scopes are encapsulated by compensable 

paths. Note that p1 in scope2.2 is compensable for another reason: it is  a path with an 

alternative. Path p3 in scope2 is not compensable hence its failure will not trigger 

compensation activity.  
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6.2.2 Dependencies Semantics  

 

The general behavioral dependency in Def. 4.3 is used for defining compensation 

dependencies, 𝑫ep(     𝒏 𝒏 j):=   𝑪 𝒏 (     𝒏 𝒏  .     ), to indicate that 

there exists a compensation dependency      𝒏 𝒏    𝑪   𝑪    𝒏 𝒏   such that a 

state transition in componenti  can fire a  compensation event for componentj.  

Compensation intuitively means performing compensating activities that undo the effects 

of a succeeded atomic node. A succeeded atomic node could only exist on a succeeded or 

failed15 path and hence not-activated paths or compensated16 paths could not possibly 

have succeeded nodes. A succeeded and failed execution path may only be encapsulated 

by succeeded or failed scopes since a not-activated scope encapsulates only not-activated 

paths.  

 

Therefore, a component is a compensation candidate iff it is: 

1- Succeeded atomic node 

2- Succeeded or failed compensation path 

3- Succeeded or failed scope node.  

 

In our compensation model, compensation dependencies are defined for all compensable 

components (i.e. component.isCompensable=TRUE) and when satisfied, compensation 

events are fired but only components that are candidate for compensation actions are 

compensated.  

                                                 
15

 A failed path could be partially succeeded 
16

 Within an exclusive scope 
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Compensation semantics for execution paths states that when a path commences its 

compensation, a compensation event is fired for the last node on the path, and 

compensation events and actions are cascaded in reverse order until the first node is 

compensated such that the preceding node in a sequence can commence its compensation 

only after the succeeding node on the same path has finished its compensation.  

 

To enforce the reverse order of compensations along compensating paths, the model 

explores all nodes existing on the path (i.e. all compensation events of nodes are 

assessed) but only compensates candidate nodes. Non-candidate nodes are explored but 

skipped. So mainly exploring a non-candidate is required just to enforce the reverse 

sequence of compensations, but without performing any compensation actions in the 

node. 

 

Compensation semantics for scope nodes states that when a scope commences its 

compensation, a compensation event is fired for all its enclosed paths but only candidate 

paths are compensated. Non-candidate paths are ignored.  

 

Based on the above argument, when a compensation event is fired for a component that is 

not a candidate for compensation action, the model corresponds according to the 

following rules:  
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CR1. If the component was an atomic node that has not been succeeded (failed, not-

activated, or aborted) or it was a scope node that is not activated, the node is 

skipped (i.e. its state is marked as SKIPPED).  

Def. 6.1: (skipping a node on a compensating path) 
𝑪   𝑫  (          )  𝑻  𝑬                     𝑪𝑪𝑬𝑬𝑫𝑬𝑫   

                                                           (          )  
𝑪   𝑫  (         )  𝑻  𝑬                   𝑶𝑻  𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 

                                                                       (         ) 

 

 

CR2. If the component was a not-activated or previously compensated path, no action is 

taken for its compensation event; hence the state of the path remains as its current 

marked state. 

 

6.2.2.1 Compensation Dependencies 

 

A partial compensation dependency is defined as follows:   

1- Between a node and its successor (if any) iff its superior path IsCompensable. 

2- Between a path and its superior scope iff and only iff the scope IsCompensable. 

3- Between the last node and its encapsulating path iff the path IsCompensable. 

 

Therefore, compensation dependencies are defined for nodes encapsulated by a 

compensable path and for execution paths that are encapsulated by a compensable scope 

(Table 6.1) such that when a compensation event is fired for a component, the event is 

assessed by compensation policies, and if there are possible compensation actions to be 

performed on the component, then the component commence compensation and its state 

is marked as COMPENSATING.  As mentioned earlier, partial compensation is always 
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triggered by the failure of an exclusive path with an alternative and its compensation is 

mainly dependent on its own failure. Hence, a path that has an alternative is not defined 

with compensation dependency; instead, its compensation is triggered by a compensation 

policy.  

Dep # Dependency Component  
CompD.1 𝑪   𝑫  (       )          𝑷  𝒉       𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑰   

 
Last node on a 
compensable path 

CompD.2 𝑪   𝑫  (𝒏    )   
superior       𝑪    𝒏    𝒏   

⋀  (𝒏            𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫    𝒏              𝑰𝑷𝑷𝑬𝑫) 
 

A node that has a 
successor on a 
compensable path 
node2=successor(no
de1) 

CompD.3 𝑪   𝑫  (     𝒉)                        𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑰   
 

Path within a 
compensable scope 

Table 6.1 Compensation Dependencies 

 

A compensation event is fired for the last node on a compensable path when the path has 

commenced its compensation (CompD.1) and is fired for a path when its superior scope 

has commenced its compensation (CompD.3). (CompD.2) enforces the reverse order of 

compensation activation such that a compensation event is fired for a node if its successor 

on the path has been compensated or skipped. 

 

6.2.2.2 Compensation Completion Dependencies 

 

Compensation completion dependencies are defined for compensable paths and scopes to 

signal the end of their compensation process (Table 6.2) such that when fired, they are 

marked by a completion policy as COMPENSATED.  

 

For atomic nodes, compensation completion is triggered by an internal event for the 

node. It is an assumption of the model that compensation completion of the node is 
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guaranteed to succeed, and thus, when a compensation completion event is fired for an 

atomic node, it is marked as COMPENSATED. 

 

A compensating path ends its compensation process when the first node in the path has 

either compensated or skipped (CpCompLD.1).  

 

To reach a consensus about the compensation completion of a scope, we have to evaluate 

all possible states of its encapsulated paths at the time the scope has SUCCEEDED or 

FAILED.   

From Chapter 5, an exclusive scope succeeds if an exclusive path succeeds, thus the 

scope completes with one succeeded path in addition to one or more compensated and/or 

not-activated paths depending on rank of the succeeded path in the scope. And an 

exclusive scope fails when the last path fails; hence, the scope completes with one failed 

path and one or more compensated paths, depending on the number of paths within the 

scope. From CR2, we may conclude that a compensable exclusive scope always has only 

one compensation candidate path, and hence the scope is treated as a single path, and 

consequently the compensation completion of its candidate path signals the compensation 

completion of the scope. 

 

Compensation of concurrent paths is executed concurrently but in reverse order of 

activations of their nodes. Hence, their compensation completion has to be synchronized 

and this is formalized through compensation completion dependency. A failed or 

succeeded concurrent scope may encapsulate only succeeded and/or failed   paths in case 

of AND-scope, and succeeded and/or failed and/or not-activated paths in case of OR-
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scope. We say that a concurrent path completes its compensation when all paths are 

either compensated or not-activated (CpCompLD.2) and we define the same dependency 

for both AND and OR scopes.  

 

Dep # Dependency Component  
CpCompLD.1 𝑪 𝑪   𝑳𝑫  (   𝒉)   

(                𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫)                  
   𝑰𝑷𝑷𝑬𝑫) 

Compensable Path  
 

CpCompLD.2 𝑪 𝑪   𝑳𝑫  (     )                   𝒏    𝒏    

( ⋀ (   𝒉𝑳           𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫      𝒉𝑳          

      

  𝑶𝑻  𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫) ) 
 

Compensable 
concurrent scope 
with m paths 

Table 6.2 Compensation Completion Dependencies 

 

6.2.3 Partial Compensation Mechanism 

 

Partial compensation is automated through compensation policies (Table 6.3) and 

compensation completion policies (Table 6.4). The automation process is illustrated 

through Control charts (12-15). Note that we add a consistency condition 

(LRT.state=ACTIVATED) to all compensation policies to differentiate between the partial 

compensation mode and comprehensive compensation mode 

(LRT.state=COMPENSATING), such that compensation events are handled reliably and  

in context with the  correct mode of compensation. 
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Rule# Compensation Policies Component  
CompR.1 ON fail(path) 

IF    path.hasAlternative and  
      node.superior.state=ACTIVATED 

           DO compensate(path) 

Exclusive path 
with alternative 

CompR.2 ON CompDep(path) 
IF   LRT.State=ACTIVATED and (path.state=SUCCEEDED   
      or path.state=FAILED ) 
DO compensate(path) 

Compensable path 
previously 
succeeded or failed 
 

CompR.3 ON CompDep(node) 
IF    LRT.State=ACTIVATED and node.Type=ATOMIC and  
       node.State=SUCCEEDED  
DO compensate(node) 

succeeded Atomic 
node 

CompR.4 ON CompDep(node) 
IF    LRT.State=ACTIVATED and node.Type=ATOMIC and  
       (node.State=FAILED or node.state=NOT-ACTIVATED 
        Or nodeState=ABORTED)  
DO skip(node) 

Non succeeded 
atomic node 

CompR.5 ON CompDep(node) 
IF    LRT.State=ACTIVATED and node.Type=SCOPE  and  
      (node.State=SUCCEEDED or node.state=FAILED) 
DO compensate(node) 

Succeeded or failed 
scope 

CompR.6 ON CompDep(node) 
IF    LRT.State=ACTIVATED and node.Type=SCOPE  and  
       node.state=NOT-ACTIVATED 
DO skip(node) 

Not activated 
scope 

Table 6.3 Compensation Policies 

 

 

Rule# Compensation Policies Component  
CpCompLR.1 ON “internal compensation completion event of atomic node” 

IF   LRT.State=ACTIVATED 
DO compensated(node) 

Atomic node 

CpCompLR.2 ON CpCompLDep(path) 
DO compensated(path) 

 

Path  

CpCompLR.3 ON CpCompLDep(node) 
IF   node.Type=SCOPE and node.state≠SKIPPED 
DO compensated(node) 

Concurrent Scope  

CpCompLR.4 ON compensated(path) 
IF   path.IsExclusive and 
     Path.superior.state=compensating 
DO compensated(path.superior) 

Exclusive path  

Table 6.4 Compensation Completion Policies 

 

The partial compensation mechanism is automated as follows:   

1- When a failure event is fired for an exclusive path with an alternative, the event is 

assessed by (CompR.1) and the path is marked COMPENSATING. 
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2- A compensation event fired for a compensable path is assessed by (CompR.2) and 

the path is marked COMEPSNATING. 

3- When a path commences its compensation, a compensation event is fired for the 

last node in the path (CompD.1). 

 

Control Chart 12. Compensation of Path 

 

4- When a compensation event is fired for an atomic node, if the node has 

succeeded, the event is assessed by (CompR.3) and the nodes start 

COMPENSATING. 

5- When a compensation event is fired for an atomic node, if the node that has not 

been succeeded, the event is assessed by (CompR.4) and the node is SKIPPED. 

6- When an internal compensation completion event is fired for an atomic node, the 

node is marked as COMPENSTAED (CpCompLR.1). 



6.2 Partial Compensation                                                                                                

 

141 

 

7- A compensation event fired for a non-activated scope is assessed by (CompR.6) 

and the scope is SKIPPED. 

8- A compensation event fired for a SUCCEEDED or FAILED scope is assessed by 

(CompR.5) and the scope starts compensating.  

9- When a scope commences its compensation, a compensation event is fired for all 

its encapsulated paths (CompD.3) and control goes to step 2. 

 

 

 

Control Chart 13. Compensation of node 
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10- When a node is COMPENSATED or SKIPPED, if the node was the first node in the 

path, a compensation completion event is fired for the path (CpCompLD.1) and 

the path is marked compensated by (CpCompLR.2). 

11- If a COMPENSATED or SKIPPED node has a predecessor node, a compensation event 

is fired for the preceding node (CompD.2) and control goes to step 4 or 5. 

 

 

Control Chart 14. Compensation Completion or Skipping of a node 

 

12- When a compensation completion event is fired for an exclusive path within an 

activated exclusive scope, an activation event is fired for the next alternative path 

(ActD.6)17 and the node is activated by activation policy (ActR.3)18. 

                                                 
17

 Table 5.1, Chapter 5. 
18

 Table 5.1, Chapter 5. 
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13- When a compensation completion event is fired for an exclusive path within a 

compensating exclusive scope, the scope is marked COMPENSATED by Policy 

(CpCompLR.4). 

14- When a compensation completion event is fired for a concurrent scope 

(CpCompLD.2), the scope is marked compensated by policy (CpCompLR.3). 

 

 

Control Chart 15. Compensation Completion of a Path 

 

6.2.4 Example 

 

For further illustration of the mechanism, we assume different failure scenarios for path 

p1 in scope2 (Figure 6.1), and we apply partial compensation semantics on each scenario 

and demonstrate the state of all components before and after compensation is applied. 
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Figure 6.2 A caption of scope2.p1 in sample LRT2 

 

We assume the following failure scenarios: 

 

Scenario1: n3 fails and hence p1 fails by propagation, and hence all other components are 

not activated. 

Scenario2: n3 succeeds, n7 is activated but n6 fails and thus scope2.1.p1 fails by 

propagation. n6 fails scope2.1.p1 and scope2.1 by propagation. Failure scope2.1 force fails 

scope2.1.p2 and hence n7 if forced to fail (aborted). Failure of vital scope2.1 fails p1 by 

propagation and n11 remains not activated 

Scenario3: n3, n6 succeeds, and non-vital n7 fails which fails scope2.1.p2 by FailR.7 but 

scope2.1 succeeds by CompLR.5. n11 vital but fails and thus p1 fails by propagation. 

The current execution states (w.r.t different scenarios) of scope2.p1’s encapsulated 

components at the time p1 fails are represented in (Table 6.5).  

S n3 Scop2.1 
p1 

n6 Scop2.1 
p2 

n7 scope2.1 n11 

1 FAILED NOT-
ACTIVATED 

NOT-
ACTIVATED 

NOT-
ACTIVATED 

NOT-
ACTIVATED 

NOT-
ACTIVATED 

NOT-
ACTIVATED 

2 SUCCEEDED FAILED FAILED FAILED ABORTED FAILD NOT-
ACTIVATED 

3 SUCCEEDED SUCCEEDED SUCCEEDED FAILED FAILED SUCCEEDS FAILED 

Table 6.5 Current Execution State Instances of failed scope2.p1 in figure 6.2 
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In (Table 6.6), we show the current execution states of the components after applying 

partial compensation to scope2.p1 w.r.t different failure scenarios. Note that failure of 

scope2.p1 triggers a compensation of the path by policy CompR.1. 

 

In scenario 1: n11 is not-activated, and thus is SKIPPED by policy CompR.4. Scope2.1 is not-

activated and thus skipped by CompR.6. p1 and p2 are paths within a skipped scope hence no 

compensation dependency is fired for them, and hence all scope2.1’s encapsulated components 

states remain unchanged. Note that scope2.1 can never be fired with compensation completion 

dependency, since it can only be evaluated for compensating scopes (CpCompLD.2). n3 has failed 

and thus skipped after compensation.  

 

In scenario 2: scope2.1 has failed hence it is explored by CompR.5. Compensating scope2.1 fires 

compensation events for p1 and p2 which both have failed and hence explored by policy 

CompR.2. n7 has been aborted and n6 has been failed and hence they are both skipped which 

consequently triggers a compensation completion event for both p1 and p2. Marking p1 and p2 as 

compensated triggers a compensation completion event for scope2.1 (CpCompLD.2) and hence the 

scope is COMPENSATED. 

 

In scenario 3, Scope2.1 has succeeded and thus it is explored in the following manner: 

both its paths p1 and p2 start compensating, n6 and n7 are explored because they are the 

last nodes on the paths, n6 is compensated (CompR.3) and n7 is skipped. Subsequently p1, 

p2, and their scope2.1 are all marked COMPENSATED by compensation completion events 

and policies. .  
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S n3 Scop2.1 
p1 

n6 Scop2.1 
p2 

n7 scope2.1 n11 

1 SKIPPED NOT-
ACTIVATED 

NOT-
ACTIVATED 

NOT-
ACTIVATED 

NOT-
ACTIVATE
D 

SKIPPED SKIPPED 

2 COMPENSATE
D 

COMPENSATE
D 

SKIPPED COMPENSATE
D 

SKIPPED COMPENSATE
D 

SKEPPE
D 

3 COMPENSATE
D 

COMPENSATE
D 

COMPENSATE
D 

COMPENSATE
D 

SKIPPED COMPENSATE
D 

SKIPPED 

Table 6.6 Current Execution State Instances of compensated scope2.p1 in figure 6.2 

 

6.3 Comprehensive Compensation 

 

We have demonstrated in section 6.3 the mechanism for partial compensations which 

takes place while the LRT is still activated and for which failures are tolerable and does 

not lead to a global failure of the transaction. Some failure events lead to global failure of 

the transactions, as discussed in the failure handling mechanism in Chapter 5. These 

failures are mainly triggered by a failure of a vital node that is preceded by a hierarchy of 

vital ancestor components towards the top of the hierarchy, such that the failure 

propagates up the hierarchy structure and reaches the main execution path and 

consequently the transaction globally fails.  

 

From a business point of view, a failed transaction means that it has failed to achieve its 

expected outcome, however some tasks could have succeeded but their effects are no 

longer required, since the transaction has failed. From the reliability and consistency of 

transaction’s point of view, these successful tasks should be compensated and their 

effects should be undone to guarantee the consistency of all systems involved in the 

transaction. The question arising is how to apply compensations and in which order. As 
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we have discussed in Chapter 1, strict global backward recovery restricts business 

process designers from freely expressing compensation logic in an arbitrary manner and 

as required by the business logic of the process.   

 

The COMPMOD model supports a customized-compensation method that provides 

transaction designers with the flexibility of expressing their business process logic. 

Compensation logic can then be mapped onto the business process in a very flexible way 

to meet business needs. The designer is allowed to specify compensation patterns on a 

subset or subsets of atomic nodes (component services) of an LRT. A compensation 

pattern decides the order by which the specified services are compensated. Services that 

are not involved in any compensation pattern are compensated concurrently. This will 

increase the performance of the system in terms of time spent on the compensation 

process. Assignment of compensation patterns is restricted by validity rules to avoid 

deadlocks and violation of logic integrity. The general mechanism of comprehensive 

compensations guarantees the following: 

 

1- Each atomic node in the LRT is traversed. 

2- Each succeeded atomic node in the LRT is compensated. 

3- If there are customized compensation patterns, then the order of each pattern is 

enforced.  

4- Achieving (1-3) guarantees an explicit compensation completion state of the 

transaction (LRT.state=COMPENSATED). 
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Customized compensations are formalized through customized compensation 

dependencies, and are automated through customized compensation policies. The 

formalism embeds a traversing mechanism that ensures navigation of all atomic nodes in 

the transaction. In the following subsections we demonstrate the method. 

 

6.3.1 Customized Compensation Dependency Graph  

 

The customized compensation control flow is represented in COMPMOD as a directed 

acyclic dependency graph, where vertices in the graph represent atomic nodes, and edges 

in the graph represent compensation dependencies. In order to achieve an acyclic 

dependency graph, we provide a method for defining customized dependency patterns 

that are cycle free, such that only valid dependencies are allowed. The motivation for the 

graph to be acyclic is that this ensures that the mechanism is deadlock free by design. 

 

A customized compensation dependency is denoted as  𝒏     𝑪𝑪𝑫  𝒏      for any 

two atomic nodes 𝑛𝑜𝑑𝑒 , 𝑛𝑜𝑑𝑒        , where NODES is the set of all nodes in LRT 

and is read as “there exists a customized compensation dependency from 𝑛𝑜𝑑𝑒  to 𝑛𝑜𝑑𝑒  

such that  𝑛𝑜𝑑𝑒  can be compensated only after  𝑛𝑜𝑑𝑒   has been visited in the traversing 

graph”. Therefore, it is convenient to think of  𝑛𝑜𝑑𝑒  as the source of the dependency and 

𝑛𝑜𝑑𝑒  as the target of the dependency.  To define a compensation dependency, a source 

node and a target node are assigned from the set of LRT atomic nodes, provided that the 

dependency is valid. 
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A compensation pattern is formed when two or more nodes are associated through 

customized compensation dependencies. Figure 6.3 shows an LRT-WF schema for a 

sample LRT3 with allocated compensation dependencies. For example, the dotted arrow 

from n3 to n1 states that n3 is the source node and n1 is the target node. Note that 

customized compensations in Figure 6.3 are assigned arbitrarily in the sense that it can be 

assigned between nodes on different paths, e.g. n5 and n3 or between nodes in different 

scopes, e.g. n8 and n6. The motivation behind these arbitrary assignments is principally, 

the business logic of the process. E.g. update inventory should be compensated after 

shipping goods is compensated where both activities may exist in different scopes. 

 

Figure 6.3: A Sample LRT3 with customized compensation dependencies 
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The dependency graph is represented by the pair   (  𝑬) where  

     𝒏     𝒏       𝑶𝑫𝑬   𝒏  𝒏     𝒚   𝑨𝑻𝑶𝑴𝑰𝑪  is the set of all atomic 

nodes in the LRT, and 

 𝑬  {(𝒏     𝒏    )|𝒏      𝒏           𝒏    𝒏     𝑪𝑪𝑫  𝒏      𝒉         

is a binary relation on V representing customized compensation dependencies, where a 

pair (𝒏     𝒏    ) designates that there  is a directed edge in the dependency graph 

from 𝑛𝑜𝑑𝑒  to 𝑛𝑜𝑑𝑒  and that 𝑛𝑜𝑑𝑒  is compensationally dependent on 𝑛𝑜𝑑𝑒   . 

A node in G is isolated if it has no edges incident from it or incident to it. In the 

dependency graph, a node is isolated if it is not part of any compensation dependency.  

We define 𝑫    𝒏     𝒏        𝒏    (𝒏     𝒏    )   𝑬  𝒉    𝒏     

𝒏       𝒏     𝒏       to be the set of all isolated nodes in G.  

 

A node in the dependency graph is a Root if there are no edges incident to it.  In other 

words, a node is a root if it is not a target in a customized compensation dependency. We 

define    𝑻   𝒏     𝒏        𝒏    (𝒏     𝒏    )  𝑬  𝒉    𝒏     

𝒏     to be the set of all root nodes.  Note that isolated nodes are also root nodes, since 

an isolated node has no edges incident to it, that is 𝑫   𝑻. 

 

A node in G is a source root node if it has at least one edge incident from it and has zero 

edges incident to it. A source root node can be a source node of one or more 

compensation dependencies, but it is not a target node in any compensation dependency. 

Any source root node is in RT since it has no edges incident to it, but it is not in D since 
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it has at least one edge incident from it. We define  

    𝒏    𝒏        𝒏  𝒏     𝑫  to be the set of all source root nodes in G.  

A node in G is a target node if it has at least one edge incident to it. We define  𝑻  

 𝒏    𝒏        𝒏    (𝒏     𝒏    )  𝑬  𝒉    𝒏     𝒏     to be the set of 

all target nodes in V. 

 

A node in G is a terminal node if it has no edges incident from it and has at least one edge 

incident to it. A terminal node can be a target node in one or more compensation 

dependencies, but not a source in any compensation dependency. We define  

𝑻   𝒏    𝒏        𝒏    (𝒏     𝒏    )  𝑬  𝒉    𝒏     

𝒏     𝒏    (𝒏     𝒏    )  𝑬  𝒉    𝒏     𝒏     to be the set of all terminal 

nodes in G. 

 

The dependency graph of the LRT3 in Figure 6.3 is depicted in Figure 6.49(a) and in 

figure 6.4(b) we show the set mapping of the dependency graph.  
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Figure 6.4 Dependency Graph for sample LRT3 

 

6.3.2 Compensational Attributes 

 

A customized compensation dependency entails the following compensational attributes:  

 

 A target node 𝑛𝑜𝑑𝑒  can be a target node for one or more source nodes.   Each 

target node 𝑛𝑜𝑑𝑒     is associated with a list of its source nodes as 

𝒏           𝑳    [               𝒏] where n≥1. 

 Every 𝑛𝑜𝑑𝑒     is associated with an IsVisited Boolean attribute to indicate 

whether the node has been traversed or not in the comprehensive compensation 

process.  We say that 𝑛𝑜𝑑𝑒  has been visited if (𝒏     𝑰        𝑻  𝑬) 

otherwise the node has not been traversed and  (𝒏     𝑰         𝑨𝑳 𝑬). 



6.3 Comprehensive Compensation                                                                                  

 

153 

 

6.3.3 Validity of Compensation Dependencies 

 

In this section, we describe the construction process of the dependency graph, and show 

that this process will avoid inclusion of cycles. 

Given an existing valid dependency graph G, appending a new dependency between any 

two nodes 𝑛  𝑛    will add an edge to G. The new edge will be tested first for its 

validity. If the edge does not lead to a cycle in G, then the edge is considered valid and 

appended to G. If the added edge forms a cycle in G, then the edge is not valid and will 

not be appended to G. 

 

We say that an empty graph, a graph with no edges in E (G.E=ф), is a valid graph. 

Adding a new edge (𝑛  𝑛 ) 𝑜  𝑖   , to an existing valid graph G have the following 

possibilities: 

 

1- If G.E= ф then adding a single edge to the graph will not form a cycle, therefore 

it is valid. 

2- If 𝒏   𝑻  then the added edge is valid since all root nodes have no edges 

incident to it and therefore there is no possibility of cycle formation in G. 

3- If 𝒏  𝑻 or 𝒏  𝑫 then the added edge is valid since all terminal and isolated 

nodes have no edges incident from it and therefore there is no possibility of cycle 

formation in G. 

4- A new edge (𝒏  𝒏 ) will form a cycle in the existing dependency graph if (a) it 

does not satisfy any of the above conditions, and (b) there exists a path from 𝒏  to 
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5- 𝒏  in the graph (𝒏  𝒏 ). If there is no path from 𝒏  to 𝒏  then the compensation 

dependency 𝒏  𝑪𝑪𝑫  𝒏  is a valid dependency. We define vaildG algorithm to 

validate case (b).  

The following algorithms are implemented to initialize, construct, update and validate 

dependency graphs.   

The dependency graph G is initialized as follows: 

 

InitG(G) 

1. E=ф 

2.      𝒏     𝒏       𝑶𝑫𝑬   𝒏  𝒏          𝑨𝑻𝑶𝑴𝑰𝑪  
3. RT=D=V 

4. T=SR=TG=ф 

5.        𝒉 𝒏       
6.      𝒏    𝑰          𝑨𝑳 𝑬  
7.  𝒏         𝒏          𝑳     

 

Given a valid dependency graph G and a valid new edge (s,t), the following algorithm 

updates G and the associated graph sets. 

UpdateG(G,(s,t)) 

1. E=E+{(s,t)} 
2. append s to t.SourceList 
3. if s in D then D=D-{s}                      
4.                         SR=SR+{s} 
5. if s in T then T=T-{s} 
6. if t in D then D=D-{t} 

7.                         T=T+{t}      

8. RT=D SR 

9. TG=TG T 

 

Suppose that   denotes node vertices in G, then we define a compensating path  

           as a path in the dependency graph that starts with a source root vertex  
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       and ends with a terminal vertex      such that     and  (       )   

   𝑜  𝑖     (   ). Note that isolated nodes do not belong to any compensation path.  

We say that a new added edge (s,t) forms a cycle in G if and only if there exists a path 

from t to s in G, that is,             where     such that    𝑡 and    𝑠 and 

(        )    for i=1..(k-1). 

 

Given a valid dependency graph G and a new edge (s,t),  validG algorithm returns TRUE 

if the added edge does not form a cycle in the dependency graph and returns FALSE 

otherwise. 

 

The algorithm uses a breadth first search algorithm adapted from (Cormen et al., 2009), 

but it was amended to find the shortest path (if one exists) from t to s.  

 

validG(G,(s,t)) 

1. Q=Ø 

2. ENQUEUE(Q,s) 

3. While Q≠Ø 

4.      u=DEQUEUE(Q,s) 

5.      For each            𝑳    

6.             if      then RETURN FALSE 

7.             else ENQUEUE(Q,v) 

8. RETURN TRUE 
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6.3.4 Compensational Behavior  

  

Given a valid dependency graph of an LRT, COMPMOD applies a graph traversing 

mechanism to ensure that every 𝑛𝑜𝑑𝑒    is visited and that the specified order of 

customised compensations is enforced.  

 

A node in the graph can either be waiting, explored or visited. A node is said to be 

waiting if there is no compensation event fired for the node. A node is said to be explored 

when a compensation event (CCDep()) is fired for the node and some actions are taking 

place with regard to the explored node. When the actions have been completed, execution 

leaves the node and marks it as visited.  

 

The traversing mechanism operates as follows:  

 

Initially, all nodes are in the waiting phase, where they are all marked as not visited and 

no compensation event is fired for them: 

(∀ 𝒏        𝒏     𝑰          𝑨𝑳 𝑬  𝒏  𝑪𝑪𝑫  (𝒏    )   𝑨𝑳 𝑬).  If the LRT 

commences its compensation (LRT.State=COMPENSATING), a compensation event is 

fired for all root nodes in RT and they are all explored concurrently: 

(∀ 𝒏       𝑻 𝒏     𝑰          𝑨𝑳 𝑬  𝒏  𝑪𝑪𝑫  (𝒏    )  𝑻  𝑬). 

 

When a node is being explored, the current state of the node is checked. If the node has 

been previously succeeded, the node is called for compensation and its state is marked as 

COMPENSATING. When an internal compensation completion event is fired for an 
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explored compensating node, its state is marked as COMPENSATED, and it is marked 

visited: 

(     𝒏     (𝒏   )  𝒏    𝑰         𝑻  𝑬). 

 

If the node being explored has not been previously succeeded, that is, it is in one of the 

following states {NOT-ACTIVATED, COMPENSATED, SKIPPED, FAILED, ABORTED} 

and therefore no compensation action is taking place on the explored node, then the node 

is marked visited:  

(𝑪𝑪𝑫  (𝒏   )  𝑻  𝑬   𝒏            𝑪𝑪𝑬𝑬𝑫𝑬𝑫   𝒏                  ) 

 

A target node remains waiting until all its source nodes have been visited. Once all the 

source nodes are visited, the target node is explored. 

Once all the atomic nodes in the LRT are visited, a customized compensation completion 

event is fired for the LRT and is marked as COMPENSATED. 

  

6.3.5 Customized Compensation Dependencies 

  

Customized compensation dependency (Table 6.7) is defined for target nodes and root 

nodes.  

A customized compensation dependency is fired for all root nodes when the LRT 

commences its compensation (CCD.1). 

A target node can be a target node to one or more source nodes. Hence, a customized 

compensation dependency is fired for a target node iff all its source nodes have been 
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visited (CCD.2). A compensation completion dependency is fired for the LRT when all 

atomic nodes in the LRT have been visited (CCCD.1). 

 

Dep # Dependency Component  
Customized Compensation  

CCD.1 𝑪𝑪𝑫  (        )   
𝑳 𝑻       𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑰   

Atomic Root node 

CCD.2 𝑪𝑪𝑫  (𝑻         )    ⋀      𝑳     𝑰        

     𝒏

 

 

Atomic Target node 
to n source nodes 
where n≥1 

Customized Compensation Completion 
CCCD.1 𝑪𝑪𝑪𝑫  (𝑳 𝑻)  ⋀ 𝒏     𝑰        

     𝒏

 LRT where 
n=number of atomic 
nodes 

Table 6.7 Customized compensation dependencies 

 

6.3.6 Customized compensation mechanism 

 

The compensation mechanism is automated by compensation and completion policies 

presented in Table 6.8. We support our discussion with control charts 16 and 17. 

 

Rule# Policy Component  
Customized Compensations 

CCR.1 ON fail(LRT) 
IF   “no nodes executing(activated/compensating)” 
DO compensate(LRT) 

LRT 

CCR.2 ON CCDep(node) 
IF   LRT.State=COMPENSATING  and  
      node.state=SUCCEEDED 
DO compensate(node) 

Succeeded atomic 
node 

CCR.3 ON CCDep(node) 
IF   LRT.State=COMPENSATING  and  
      node.state≠SUCCEEDED 
DO node.Visited=TRUE; 

Non succeeded 
Atomic node 

Customized Compensation Completion 
CCCR.1 ON “compensation completion event of an atomic  

         node”  
IF    LRT.state=COMPENSATING 
DO  compensated(node); 
        node.IsVisited=TRUE; 

Atomic 
compensating 
node 

CCCR.2 ON CCCDep(LRT) 
DO  compensated(LRT) 

LRT 

Table 6.8 Customized compensation policies 
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The mechanism is automated as follows: 

1-  When the LRT fails, the LRT commences its comprehensive compensation 

process (CCR.1). 

2- When the LRT starts COMPENSATING, a compensation event is fired for all root 

nodes (CCD.1). 

 

Control Chart 16. Comprehensive Compensation  

 

3- If a compensation event is fired for a non-succeeded node, the node is marked as 

visited (CCR.3) and compensation action is not performed. 

4- If a compensation event is fired for a succeeded node, the node starts 

compensating (CCR.2). 

5- When a compensation completion event is fired for a compensating node, the 

nodes is marked compensated and visited (CCCR.1). 

6- A compensation event is fired for a target node when all its source nodes have 

been visited (CCD.2) and execution control goes back to step 3. 
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7- When all nodes have been visited, a compensation completion event is fired for 

the LRT (CCCD.1) and the LRT is marked as COMPENSATED (CCCR.2). 

 

 

Control Chart 17. Customized compensation of atomic nodes 

 

6.3.7 Examples 

 

6.3.7.1 Customized Compensation Dependencies for OP Case Study 

 

The OP workflow (Figure 4.5) does not represent any XOR patterns and therefore it is 

not defined with partial compensation dependencies. We refer back to the original 

specification of OP (Figure 2.1, Chapter 2), where the business logic requires that in case 

of compensation, the compensation of DELIVERY must be performed before the 

compensation of CHARGE. Hence there exists a compensation dependency from 
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DELIVERY to CHARGE. In Figure 6.5 (a), we expand the OP workflow with 

customized compensation dependencies.  Note that by (1) allowing the business process 

designer to freely assign customized dependencies, and (2) providing a deadlock free 

dependency graph algorithm to define the comprehensive compensation order, the 

designer implicitly defines a deterministic compensating process schema (Figure 6.5 (b)).  

 

 

Figure 6.5 Final OP workflow schemas 

 

When a failure declares OP failed and hence it starts compensating, the comprehensive 

compensation mechanism starts by compensation all activities that are not a target in any 

compensation dependency (the root nodes).  The compensation of root activities are 

initiated in parallel, hence they are best represented by an AND-split like pattern in the 

compensating schema (Figure 6.5 (b)). Compensation of CHARGE will wait for 
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compensation of DELIVERY to be completed. The compensation of OP is completed 

once all activities are traversed and compensated/skipped depending on their execution 

states. The synchronization of all compensating activities fires a completion event for OP 

(CCCDep(OP)=TRUE) and it is represented in (Figure 6.5 (b)) by a synchronizer point. 

 

In COMPMOD, comprehensive and customized compensation dependencies are only 

defined for atomic nodes, and therefore they are only defined for OP’s activities as listed 

in Table 6.9. Compensation completion for atomic nodes is an internal event and thus it is 

not defined for atomic nodes. A compensation completion dependency is defined for OP 

to signal the end of compensation execution for all activities in OP. 

 

Note that by defining transactional attributes of OP (Section 4.4), Control flow 

dependencies for OP (Section 5.5.), and the compensation dependencies in this section, 

the modeling of OP in COMPMOD has been completed.  

 

 Customized Compensation 

Dependency 

Customized Compensation Completion 

Dependency 

OP Not Defined SALES I Vi it d TRUE    

CHARGE I Vi it d TRUE    

OUTSOURCE_ANALYSIS.I Vi it d TRUE    

DELIVERY I Vi it d TRUE    

CHECK_GOODS.IsVisited=TRUE  
 

SALES OP.State= COMPENSATING Internal Event 

CHARGE DELIVERY.IsVisited= TRUE Internal Event 

OUTSOURCE

_ANALYSIS 

OP.State= COMPENSATING Internal Event 

DELIVERY OP.State= COMPENSATING Internal Event 

CHECK 

_GOODS 

OP.State= COMPENSATING Internal Event 

Table 6.9 Customized compensation dependencies for OP activities 
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6.3.7.2 Comprehensive Compensation Mechanism for Sample LRT3 

 

We illustrate our comprehensive compensation mechanism on sample LRT3. First, we 

show how nodes’ customized compensation dependencies are defined, then we assume an 

execution scenario that fails the transaction, and finally we demonstrate how the 

transaction is compensated. In section 6.3.5, we have shown how the dependency graph 

splits the atomic nodes into root nodes and target nodes, and accordingly, decides their 

customized compensation dependencies. Note that UpdateG updates the source list of all 

target nodes such that: n1.sourceList=[n3], n3.sourceList=[n5], n6.sourceList=[n8], 

n10.sourceList=[n5,n13], and n11.sourceList=[n6] where RT={n2,n4,n5,n7,n9,n12,n13} and 

TG={n1,n3,n6,n10,n11}.  

 

Following the definitions in (Table 6.3) and mapping them onto the dependency graph in 

(Figure 6.4 (b)), the set of atomic nodes in LRT3 are defined with the following 

dependencies: 

1- ∀ 𝑛𝑜𝑑𝑒        𝑒𝑝(𝑛𝑜𝑑𝑒)  𝐿   𝑠𝑡 𝑡𝑒               (CCD.1). For 

example,    𝑒𝑝(𝑛 )   𝐿   𝑠𝑡 𝑡𝑒                

2- ∀ 𝑛𝑜𝑑𝑒        𝑒𝑝(𝑛𝑜𝑑𝑒)   ⋀  𝑜  𝑐𝐿𝑖𝑠𝑡   𝑠 𝑖𝑠𝑖𝑡𝑒𝑑     𝒏  (CCD.2). For example, 

   𝑒𝑝(𝑛 )  𝑛   𝑠 𝑖𝑠𝑡𝑒𝑑 and    𝑒𝑝(𝑛  )   𝑛   𝑠 𝑖𝑠𝑖𝑡𝑒𝑑   𝑛    𝑠 𝑖𝑠𝑖𝑡𝑒𝑑 

 

In Table 6.10, we assume an execution scenario for LRT3 components that causes the 

failure of the transaction and illustrate through execution state transitions and change of 

compensation attribute values how the compensation mechanism is applied. We assume 

that n13 was a vital node and failed and we assume the scope2 is vital. Failure of n13 will 
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propagate to p0 through scope2 causing the LRT to fail. Failure of and scope2 will force 

fail activated nodes n9 and n12 and hence they are both aborted. Failure of LRT 

commences its comprehensive compensation. Compensating the LRT fires compensation 

events for root nodes where succeeded nodes start compensating while non-succeeded 

nodes are marked visited. Nodes that are in waiting phase wait for their source nodes to 

be visited. For example, n1 waits for its source node n3 to be compensated and hence 

visited and n3 waits for n5. Note that n10 waits for both n13 and n5, n13 is visited while n5 is 

still compensating. Once n5 is compensated and visited, n10 can commence its 

compensation. Although n11 is aborted and no compensation action will be performed for 

it, but it still waits for its source node n6 to be visited to oblige the order of customized 

compensations. We assume an arbitrary compensation completion events scenario for 

compensating nodes and show how attribute values change. The LRT is compensated 

when all nodes are visited. 

 

node LRT activated LRT failed LRT compensating LRT compensating 
n1 SUCCEEDED SUCCEEDED Waiting  Waiting  
n2 SUCCEEDED SUCCEEDED COMPENSATING Visited  

n3 SUCCEEDED SUCCEEDED Waiting COMPENSATING 
n4 SUCCEEDED SUCCEEDED COMPENSATING visited 
n5 SUCCEEDED SUCCEEDED COMPENSATING visited 
n6 SUCCEEDED SUCCEEDED Waiting COMPENSATING 
n7 NOT-ACTIVATED NOT-ACTIVATED visited visited 
n8 SUCCEEDED SUCCEEDED COMPENSATING visited 
n9 ACTIVATED ABORTED visited visited 

n10 SUCCEEDED SUCCEEDED waiting COMPENSATING 
n11 ACTIVATED ABORTED waiting waiting 
n12 NOT-ACTIVATED NOT-ACTIVATED visited visited 
n13 ACTIVATED FAILED visited visited 

Table 6.10 execution instances of LRT3 
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Chapter 7 

Verification and Extensibility of COMPMOD 

 

 

 

 

 

 

 

 

7.1 Introduction 

 

In this chapter, we reason about the soundness of our approach; whether or not our 

semantics deal with executions and compensations correctly. We adopt a rule-based 

approach in our verification to negotiate the correctness of the model.  We also dedicate a 

section to highlight the extensibility of our approach; that is, to show how variant 

semantics of workflow patterns can be modeled using the underlying infrastructure of 

COMPMOD.  
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7.2 Verification Approach 

 

In COMPMOD, WF semantics exhibits two control flow types: 

1- Forward control flow which defines the normal flow logic according to WF patterns’ 

execution semantics such as control flow in AND scopes or sequence patterns. 

2- Compensation control flow which defines two different control flows: 

(a) Reverse control flow of forward flow in case of partial compensation mode. For 

example, compensating paths within concurrent scopes in reverse order. 

(b) Customized control flow in case of comprehensive compensation mode. 

To reason about the correctness of our proposed model, we apply the following 

verification approach: 

First we verify correctness of forward flow and reverse flow using soundness properties 

of workflows proposed in (Van Der Aalst, 1997, 1998; Van Der Aalst et al., 2011).  The 

works discuss the soundness properties in terms of WF-nets (type of Petri-nets) and does 

not capture compensation semantics. We adopt the soundness properties of (Van Der 

Aalst, 1997, 1998; Van Der Aalst et al., 2011) but we define them in the context of 

COMPMOD rule-based semantics, or more specifically, we define soundness properties 

based on analysis of rule invocation graph. In other words, we negotiate the correctness 

of COMPMOD rule invocations.  

 

Soundness properties in brief are: (1) option to complete (reachability): the end point of 

the WF is reachable for each WF execution, (2) proper completion (consistent execution): 

if the end point is reached, all executions of tasks must have terminated in consistent final 
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state, and (3) no dead transitions: all possible WF executions must not lead to dead-lock 

points in the flow.  

 

To verify properties (1) and (2), we adopt rule correctness approaches from literature 

such as triggering graphs (Aiken et al., 1992, 1995) and we set our own definitions and 

demonstrations. To verify property (3), we demonstrate the property by the proposed 

model’s construction and formalism.  

 

Second we verify the behavior of customized compensation flow by a rule invocation 

graph.   We show how the customized order of compensations is enforced and executed 

correctly. As a proof-of-concept, we demonstrate this property using the OP case study in 

Figure 6.5 

The general definition of a correct and reliable execution of control flow is:  

Def. 7.1: (Correct and reliable control flow execution) 

A control flow is correct and reliable iff it satisfies the following 

properties:  

1- It guarantees a consistent change of states for LRT and its 

constituent components.   

2- When execution starts, a final accepted state of the LRT is reached 

either by successful completion or successful compensation. 

3- If the control flow is deadlock free.  

 

In Figure 7.1, we depict a chart to illustrate our verification approach. The discussions 

follow in the next sections. 
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Figure 7.1 Verification Approach Chart 

 

7.3 Soundness of WF model 

 

 

As we have discussed in previous section, verifying soundness properties of our WF 

model implicitly verifies correctness of both forward and reverse control flows.  

We represent the control flow in our workflow schema by a rule invocation graph which 

is defined as: 

Def. 7.2: (rule invocation graph) 

A rule invocation graph is a chain of rule invocations. A rule ri may 

invoke rj if the action of ri fires an event assessed by rj. An invocation 

graph is a directed graph where each vertex is a rule and an edge exists 

from ri to rj iff ri invokes rj.  

 

To illustrate, we depict in Figure 7.2 the rule invocation graph for a running sample LRT4 

that consists of two parallel nodes n1 and n2 in a concurrent AND scope. We assume that 
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both nodes are vital and n2 fails after n1 has succeeded. The first vertex ActR.1 is 

triggered by an internal event for activating the LRT. ActR.1 changes the state of LRT 

from NOT-ACTIVATED to ACTIVATED. Consequently, ActDep(p0) is set to TRUE 

which is the event assessed by ActR.2 and therefore ActR.2 is invoked by ActR.1. 

Analogously, the same method applies to the rest of transitions in the graph. 

Highlighted vertices denote rules that are invoked by raising internal events. However, 

they appear in the graph as being invoked by another rule. Note that internal events are: 

activation of LRT and successful completion, failure, or successful compensation 

completion of atomic nodes. Internal events (except for LRT activation) are immediate 

subsequent events for an activated atomic node. Hence, ActR.3 for an atomic node is 

either followed by CompLR.1 or FailR.1 and CCR.2 is always followed by CCCR.1.  

 

Another important note is the root rule and terminal rules in the invocation graph (bold 

vertices). A root rule is the first rule in any invocation graph which cannot be invoked by 

any other rule. In our set of management rules, ActR.1 is the root rule which activates the 

LRT and initiates the invocation graph. On the other hand, terminal rules are rules that 

cannot invoke any further rules, that is, the action part of the rule does not trigger any 

further events in the system. In our set of rules, CompLR.3 and CCCR.2 are terminal 

rules which declare respectively that the LRT has either successfully completed or 

successfully compensated.  
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We chose to verify soundness based on rule analysis for the following reasons: 

1- Rules relate to components and to the method by which components change their 

execution states. A correct and consistent rule invocation graph implies consistent 

change of component states. 

2- Rules relate to the ordering of events and enforce constraints on their firings.  

Note that components are structured with arbitrary nesting, but their 

interrelationships are encapsulated such that components can only interact directly 

with their immediate neighbors or indirectly through their immediate superiors in 

a recursive manner. Encapsulation of execution semantics enforce a well-defined 

structure, and ease stepwise correctness verification, i.e. along and across LRT 

structure. For example, in the rule invocation graph of LRT4, we note how 

ordering of activations are enforced by rules. Activation of p0 can only happen 

after activation of LRT4 and activation of p1 and p2 can only happen after 

activation of scope1.  

 

In the following subsections, we discuss soundness properties.  
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Figure 7.2 Rule Invocation Graph for sample LRT4 
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7.3.1 Consistent Rule Invocation 

 

A consistent execution of control flow depends on a consistent rule invocation graph.  

Def. 7.3: (Consistent rule invocation graph) 

A consistent rule invocation graph is a terminating graph and where each 

rule invocation moves the state of LRT and its components from a 

consistent state to another consistent state.  

 

In order to verify consistency of execution, we show two properties: completeness of 

rules and rule termination. 

Completeness implies that every possible execution event fired by the running LRT 

triggers a rule, or  as proposed in (Suwa et al., 1982), that there are no missing rules to 

refer to a situation that may exist in which a particular event is fired but no rule can be 

triggered to handle the event.  

 

To demonstrate completeness property, we make use of the control charts listed in 

Chapters 5 and 6, which demonstrate the automated execution behavior of an LRT and its 

components throughout the LRT’s execution life cycle. The complete set of rules (thirty 

six rules) is mapped onto the charts as a means to illustrate its completeness criteria: that 

is, for every possible event fired by the LRT and its constituent components, there exists 

a rule to handle the event. For example, (Charts 5, page 111) shows which rules may be 

invoked when an execution path fires a successful completion event. A path could be 

main path p0, exclusive, or concurrent. For each type of path there exists a rule that 

handles the event. If the path is p0, then CompLR.3 succeeds the LRT. If the path was 

exclusive path, then CompLR.4 succeeds its superior exclusive scope. If it was a 
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concurrent path, then depending on the completion and failure dependencies of its 

enclosing scope, the enclosing scope could either succeed by CompLR.5 or fail by 

FailR.7 (chart 6, page 112). Similar argument applies to the rest of control charts. 

 

Rule termination correctness criteria guarantee that rules cannot activate each other 

indefinitely, or as defined in (Papamarkos et al., 2006) “A set of ECA rules is said to be 

terminating if for every initial event and any initial database state, the rule execution 

terminates”.  The Triggering graphs approach proposed in (Aiken et al., 1995) and 

(Aiken et al., 1992) detects non-terminating rules. We adopt their general definition of 

triggering graphs and implement our own verification method.  

 

The definition of the triggering graph is same as the rule invocation graph in (Def. 7.2). A 

triggering graph is non-terminating if a cycle exists in the graph. A cycle exists if a rule ri 

triggers/invokes rule rj where rj precedes ri it in the triggering graph. 

 

In our rule invocation graph, a cycle may occur iff an event e could fire more than once 

for the same component c. For example, if after n1 in LRT4 has been succeeded; an 

activation event fires again for n1 to move the state of n1 to activated once again. 

Therefore, we conclude the following definition for terminating rule invocation graphs: 

 

Def. 7.4: (Terminating Rule Invocation Graph) 

A rule invocation graph is Acyclic and terminating iff an event e may fire exactly 

once for a component c. 

 



Chapter 7. Verification and Extensibility of COMPMOD                                             

 

174 

 

Note that actions in rules change the state of components. For example, ActR.1 changes 

state of LRT from NOT-ACTIVATED to ACTIVATED. In order to verify the 

termination property, we demonstrate that “actions” in our management rules which 

change the execution state of components are single occurrence events.  

 

We introduce the term single-occurrence to refer to events that can only fire ones for 

each component in its execution life cycle. We show that all events in our model are 

single-occurrence events. 

 

There two ways by which LRT and its components change their states. Either by intra-

event raised for the component that causes the transition of its state (e.g. FailR.1 changes 

state of an atomic node from ACTIVATED to FAILED upon receiving “failure/ 

cancelation event of atomic node”). A change of state of a component may also be 

triggered by Inter-events raised by a change of state of an interrelated component (e.g. 

FFailR.1 changes the state of an atomic node from ACTIVATED to FAILED upon 

forced failure of its enclosing path). Therefore, we further classify the rules into two 

categories: (1) intra-rules: rules triggered by intra-events, and (2) inter-rules: rules 

triggered by inter-events. 

 

One way of demonstrating that events are single occurrence events, is to map the set of 

thirty six management rules on the state transition diagrams of the LRT and its 

components (Figure 7.3). We show that both inter-rules and intra-rules always maintain a 

consistent change in the state of components and interrelated components during their 
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execution life cycle. That is, no rule invocation moves a component to a previous state in 

the STDs.  Therefore, the events of activations, completions, failures, compensations, 

compensation completions are all single occurrence events. We thus conclude that, our 

rules invocation graph is acyclic and terminating. 

 

Note that in the STD diagrams, some arcs are labeled with more than one rule. However, 

these rules are mutually exclusive, that is only one rule may be invoked. For example in 

Figure 7.3 (c), two rules namely CpCompLR.1 and CCCR.1 label the transition of an 

atomic node from COMPENSATING state to COMPENSATED upon receiving an 

internal “compensation completion event”  for the atomic node. The constraints in these 

rules are disjoint and only one will be invoked depending on state of the LRT. If the LRT 

was activated, then the compensation of the node is performed during partial 

compensation mode and CpCompLR.1 will be invoked. If the LRT state was 

COMPENSATING, then the compensation of the atomic node is performed during 

comprehensive compensation mode and hence CCCR.1 will be invoked.   
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                                  (a) LRT                                                                                               (b) P0 

 

 

 

 
 

(c) Atomic Nodes   

 

 

 

      
                                         

                                       (d) Scope Nodes                                                           (e) Execution Paths 

 

 

 

 

Figure 7.3 STDs with Management Rules 
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7.3.2 Deadlock Absence 

 

In COMPMOD, deadlock behaviors are avoided in two ways: 

 

1- By construction: undefined behavior of a join pattern could occur if more than 

one failure or completion event is triggered for the same concurrent path relating 

to multiple instances of the process. The structured construction of the workflow 

schema ensures that all path triggered events relate to the same process instance.  

2- By formalism:  

(a) Through deadlock free semantics of synchronizer patterns.  In case of 

concurrent scopes, failure assumptions listed in (Chapter 4, section 4.7.2) 

guarantee that an execution path reaches a termination state within a finite 

time, no matter what. We have also shown in (Chapter 5, section 5.2.2) that in 

the case of OR scope, if none of the paths is enabled, then a failure event is 

fired for that scope. 

(b) Compensation completion dependency in (Chapter 6, section 6.2.2.2)  

 which is defined for compensable concurrent scopes, implicitly defines a 

synchronizer for the compensating paths. The behavioral context of such 

synchronization cannot possibly lead to deadlock, because a compensating 

path is guaranteed to complete by compensation assumption 2, in (Chapter 4, 

section 4.7.4). Furthermore, the compensation completion of a compensating 

scope does not exhibit ambiguous behavior, since each compensating path is 

guaranteed to complete. 
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(c) Customized compensation dependencies are only allowed to be defined for 

valid assignments that do not lead to a cycle in the customized compensation 

graph (Chapter 6, section 6.3.3) and thus, our comprehensive compensation 

mechanism provides a deadlock free compensation traversing algorithm.  

 

7.3.3 Reachability 

 

Reachability property guarantees that execution of LRT reaches a final accepted state. In 

our model, the final accepted states for the LRT are SUCCEEDED or COMPENSATED. 

In the context of rule invocation graphs, we can define reachability as follows: 

 

Def. 7.5: (reachability of rule invocation graphs) 

A rule invocation graph for a running instance of an LRT satisfies reachability 

property iff and only if it creates a connected graph where the graph starts by the 

root rule ActR.1 and terminates with a terminal rule CompLR.3 or CCCR.2.  

 

By showing in the previous discussions that the set of rules are complete, and that the 

rule invocation graph is terminating, consistent, and deadlock free, we conclude that 

reachability property is satisfied.   

For illustration, we refer to the rule invocation graph of LRT4 in Figure 7.2.  We have 

demonstrated how rule invocations have terminated with CCCR.2. 
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7.3.4 Proof-of-concept by Example 

 

In this section, we verify by example a specific behavioral property of our COMPMOD 

semantics. We show using the rule invocation path how the customized compensation 

order is preserved, that is, we verify the correctness of the customized compensation 

control flow. We refer to our motivating case study OP in (Figure 6.5) and its 

compensation dependencies listed in Table 6.9.  

 

We have assumed a failure scenario in Chapter 2 for OP process and we use the same 

scenario here. We assumed that vital activity CHECK_GOODS failed to succeed during 

which SALES, DELIVERY, and CHARGE have already succeeded and 

OUTSOURCE_ANALYSIS was still activated. According to the failure handling 

mechanism of COMPMOD, the failure of CHECK_GOODS will propagate upwards to 

fail OP. At the same time, activated activity OUTSOURCE_ANALYSIS will be aborted 

by downwards propagation.  

 

In Figure 7.4, we depict a caption of the rule invocation graph for the running OP 

process. The graph starts at time t1
19when rule CCR1 is invoked due to the global failure 

event of OP and the process starts its comprehensive compensation mode. Note that in 

OP (Figure 6.5 (a)), there was only one customized compensation dependency from 

DELIVERY to CHARGE to enforce compensation of CHARGE to be performed only 

after DELIVERY has successfully compensated. When OP.State=COMPENSATING, 

                                                 
19 Note that time labeling does not reflect real time clock. It is used for referencing 

arbitrary time intervals where t1<t2<..<t7 
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the customized compensation dependency of SALES, OUTSOURCING_ANALYSIS, 

DELIVERY, and CHECK_GOODS evaluate to true (Table 6.9). Hence, CCR.2 is 

invoked for succeeded activities SALES and DELIVERY and they start compensating. 

However, for non-succeeded activities OUTSOURCE_ANALYSIS and 

CHECK_GOODS, rule CCR.3 is invoked which marks the two activities IsVisited and 

no compensation actions takes place. We arbitrarily assumed that compensation 

completion of SALES happens at time t3 at which rule CCCR.1 is invoked and marks 

SALES.State=COMPENSATED and SALES.IsVisited=TRUE.  Note that the 

customized compensation dependency for CHARGE still evaluates to FALSE since it 

waits for DELIVERY to finish its compensation. Assuming that DELIVERY completes 

its compensation at t4 at which CCCR.1 is invoked and marks 

DELIVERY.State=COMPENSATED and DELIVERY.IsVisited=TRUE. At this point, 

the customized compensation dependency for CHARGE evaluates to TRUE and CCR.2 

is invoked to start compensating CHARGE. CCCR.2 will only be invoked when all 

activities are visited and the compensation completion dependency for OP (Table 6.9) 

evaluates to TRUE. Therefore, we have illustrated using the rule invocation graph of OP 

that the customized compensation order is preserved.    
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Figure 7.4 Rule invocation graph for OP  

 

7.4 Extensibility 
 

The model supports two types of concurrent executions through AND-scopes and OR-

scopes. We provide the essential infrastructure such that the formalism of concurrency 

can be relaxed or extended in many different ways in order to add additional flexibility to 

concurrent executions or to add new concurrency semantics.  

As the approach is based on a declarative (rule based) method, it is easy to implement 

and extend its operational semantics. For example, we can implement “the successful 

completion of an exclusive scope triggers a successful completion event of its enclosing 

scope” directly into a completion policy. Declarative formalisms add two advantages: (1) 
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expressing consistency conditions such as “a component can only activate if its superior 

is activated” and (2) provides flexibility for extending the model by adding new scope 

pattern semantics. 

 

In General, in order to introduce a new scope pattern, the following steps are required:  

 

1- A split pattern is combined with a join pattern. The informal semantics of the new 

scope must be stated and context issues related to possible deadlocks or undefined 

behavior of its join end must be analyzed.  

2- The impact of vitality of constituent components on the desired operational 

semantics of the new scope patterns must be stated.  Adding more flexibility and 

practicality on concurrent executions may lead to complex concurrency 

semantics, and would necessitate imposing additional vitality assumptions to 

achieve a correct consensus about successful completion and failure conditions of 

the new scope.  

3- Formally implement the new scope’s operational and transactional semantics by 

defining its completion and failure dependencies and defining its successful 

completion criteria. This may require adding new transactional attributes and 

possibly new management policies if the existing modeled infrastructure requires 

extension.  

4- Some of the join patterns in workflows describe high flexibility in the semantics 

of concurrent executions in order to progress execution as quickly as possible. For 

example, such patterns may allow succeeding the pattern upon completion of a 



7.4 Extensibility                                                                                                           

 

183 

 

5- specified number of execution paths while a decision is made about the remaining 

in-progress paths such as cancelling them or allowing them to complete without 

affecting the state of the join pattern. In case the pattern is allowed to succeed 

while there is remaining work in progress, it is important to analyze the effect of 

possible failures of the remaining paths and make decisions about their 

compensations in order to retain the overall reliable behavior of the pattern.  

 

We illustrate extensibility criteria in the following section by showing three examples of 

how extensions of the model can be achieved. In section 7.4, we provide an evaluation of 

COMPMOD based on workflow patterns of (Russell et al., 2006). 

 

7.4.1 Examples  

 

In the following examples, we outline a preliminary analysis of extending COMPMOD 

with three variant semantics for AND scopes. As stated above, more thorough analysis is 

required to maintain a reliable and consistent operational semantics.  

 

Example 1: it is possible to relax the concurrent execution of an AND-scope that 

encapsulates vital paths, so that the scope successfully completes when all vital paths 

successfully complete. Subsequent completions or failures of non-vital paths will not be 

assessed, and will not affect the state of its enclosing scope. In this case, the completion 

dependency of the scope will be defined as follows (AND
R
 denotes a relaxed AND-

scope): 
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𝑪   𝑳𝑫  (    )  ⋀ (   𝒉             𝒉          𝑪𝑪𝑬𝑬𝑫𝑬𝑫)

     

 

 

Accordingly, the following new policy can be added: 

ON CompLDep(scope) 

IF   scope=AND
R
 

         DO succeed(scope) 

 

Example 2: Extend the model by a Cancelling Discriminator AND Scope (AND
CD

).  

This would typically introduce a new scope pattern where the split point is an AND-split 

and the join end is a cancelling discriminator (Russell et al., 2006). An AND
CD

 scope 

successfully completes when 1 out of m paths succeeds, other activated paths are 

cancelled. This can be implemented by adding a discriminable attribute to execution 

paths where paths within an AND
CD

 have this attribute set to TRUE. The semantics of 

scope can be informally defined as follows:  

1- When a discriminable path succeeds the scope succeeds (new policy): 

 

            ON CompLDep(path) 

IF   path.IsDiscriminable=TRUE 

           DO succeed(path.superior) 

 

2- When a discriminator scope succeeds, fire a cancellation event for all its activated 

paths: 

 
      𝑫  (𝑫       𝒏    𝑷  𝒉)      𝒉       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫   
                                                                         𝑷  𝒉                 𝑪𝑪𝑬𝑬𝑫𝑬𝑫 

 

      The force fail event will be assessed by FFailR.3. 

3- To prevent a cancelled vital discriminator path from failing its superior, it should be 

ensured as a consistency constraint that a path can either be discriminable or 

concurrent. Hence FailR.5 will not propagate the force failure of the path upwards to 

its superior.  
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6- Decisions have to be made about cancelled paths. For integrity of process, 

cancelled paths must be compensated unless the business logic requires otherwise. 

To compensate a discriminable path, a policy “on force-fail event of discriminable 

path, compensate the path” must be implemented. 

 

Example 3: Extend the model by a Structured Partial Join AND Scope (AND
SPJ

).  This 

would typically introduce a new scope pattern where the split point is an AND-split and 

the join end is a structured partial join  (Russell et al., 2006).  An AND
SPJ

 scope is 

successfully completed when n out of m paths succeeds, other activated paths are allowed 

to complete but their completion will not trigger any further events for the enclosing 

scope. Partial join scopes may be extended with two local attributes, one attribute to 

specify n and one as a counter that is set to zero and incremented by one each time a 

successful completion of a path is triggered. The scope succeeds by applying a rule that 

specifies “On successful completion of a concurrent path, and if the path’s superior is an 

AND
SPJ

 and the number of succeed paths within the scope is equal to n, then succeed 

path’s superior”.   
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Chapter 8 

Conclusions and Future Work 

 

 

 

 

 

 

 

 

8.1 General Remarks  

 

 

The COMPMOD model is not anticipated to be “yet another LRT model”. Our aim is to 

provide an underlying infrastructure that supports compensation composition, as well as 

service composition, in a way that is flexible in structure and in representation. In 

general, strict execution semantics greatly simplify the task of ensuring reliability; 

however, this is usually at the expense of reduced flexibility. We have attempted to 

balance reliability and flexibility requirements. Our aim is “what the designer wants” and 

not “what the formalism obliges”, and in keeping a running process alive despite of 

recoverable failures. 
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In this work, we have addressed the failures and cancellations of web services, the 

cancellation of the LRT by a user, and cancellation of the LRT by irrecoverable failures. 

We have dealt with cancellation events as failures, since the cancellation of a web service 

or an LRT semantically means “its failure to complete its required task”.  Furthermore, 

the user is permitted to cancel a transaction at any point during its execution. However, it 

is possible to add extra constraints to prohibit LRT cancelation after a certain point 

during its execution, e.g. after goods have been shipped or after payment have been 

received, to reflect real world business practice. 

 

We have shown that capturing the semantics of execution paths adds great flexibility in 

applying different semantics for concurrent executions, as well as for representing 

arbitrary nesting. A further advantage would be a relatively simple representation and 

formalism of the control flow. For example, some approaches supporting control flow 

modeling depend on using a control flow token, passing either (true tokens) as in petri-

nets or (true /false tokens) as in (Weske, 2001). A true token triggers the next activity and 

false token for skipped activities. As for petri-nets, to manage concurrent threads of 

execution, “places” in the graph are used to manage token passing to join patterns. As 

may be seen from the examples demonstrated in (Russell et al., 2006), the graphs show 

complexity in representation and modeling, even for a small number of connected nodes.   

 

There is a plethora of LRT models that address the similar problems that we address in 

this research, but with different emphasis, and the overlying domains and solutions we 

provide are comparatively different. One of the main differences between the 

file:///C:/Users/hp/Desktop/CORRECTIONS/CORRECTIONS/Correction-Thesis.docx%23_ENREF_3
file:///C:/Users/hp/Desktop/CORRECTIONS/CORRECTIONS/Correction-Thesis.docx%23_ENREF_42


Chapter 8. Conclusions and Future Work                                                                       

 

188 

 

COMPMOD model and other LRT models is that nodes in COMPMOD are simply web 

services or tasks, and are not sub-transactions. Moreover, we have developed the model 

in a generic way that applies to any technology other than web services for representing 

tasks. The choice of web services was to highlight on the most loosely coupled 

environment where the probability of failure is high and can happen at any time during 

the execution of the business process.  

 

The limitations of COMPMOD are those which are related to the assumptions made – 

lifting the assumptions could be investigated in the future. For example, compensation 

assumption 2 which guarantees a successful completion of a compensating atomic node 

could be lifted. In this case, further investigation and analysis must be carried out to 

decide what actions must be done when a compensating node fails or when a 

compensating transaction fails.  Another limitation is the absence of loop patterns that 

could be realized as a necessary practice in workflow scenarios. Our proposed 

infrastructure provides the necessary mechanisms to apply variant semantics for 

concurrency and compensations as well as to loop structures and we have considered 

modeling loop semantics as future work.  

 

With respect to scalability, policy driven management systems have been used in many 

time critical large scale systems successfully, but only industrial scale case studies would 

bring these to the forefront. 
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Lastly, we emphasize the importance of making a clear separation between failure 

handling and compensation handling mechanisms, to allow for better management of the 

overall process. 

 

 

8.2 Thesis Conclusions 

 

How to compensate a long running transaction is a challenging problem in designing 

infrastructures to support B2B integration. Compensation of long running activities 

requires correct recovery mechanisms to guarantee reliable execution.  

 

We presented an approach for modelling and enacting failure recovery and compensation 

on nested long running transactions. The approach provides a novel model that makes 

explicit the propagation of failure events through the transactions. It also distinguishes 

two types of nodes - vital and non-vital - which allow a process designer to include 

activities in the design that are useful but where failure does not matter. We also 

introduced the idea of custom defined compensation dependencies in the context of final 

failure of an LRT. The designed propagation rules are enforced through a novel rule 

based management system, allowing for monitoring and controlling LRTs. Nested 

workflows are used as throughout examples. 

 

One of the motivations for this work was the perceived lack of high level approaches to 

compensation handling: compensations are part of the business process and are best 

understood at the design level. Existing support in some BPM tools (e.g. TIBCO BW or 
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IBM Process Server) and also existing work in exception handling for processes (Russell, 

Van Der Aalst, & Hofstede, 2006; Lerner, Christov, & Osterweil, 2010), address the 

issue of “things going wrong” in a way that is akin to programming level solutions. They 

require detailed consideration of each individual case of possible failure and then a 

deliberate exploration of how to handle it. The presented work lays a foundation for 

abstracting away from specific errors and considering how failure and compensation 

should be handled in the situations which are meaningful to address for the business 

analyst while dealing with all other cases automatically in standard ways defined through 

the framework and its policies. Programmatically this might mean that the tools 

implement the details of the framework through an exception handling mechanism, but 

this would be transparent to the user.    

 

There is also a growing interest in risk-aware business processes and our notion of 

vitality (combined with the proposed framework) could be one way of addressing this. 

However, this requires further study. 

 

More generally, there are two areas of work that are required to better support 

transactions: workflow or business process design standards and workflow execution 

environments. For the former, much work has been done over the last few years with the 

introduction of BPEL (more as an implementation oriented mechanism) and BPMN 

(more targeted as a business requirements capture mechanism) in formulating and 

designing workflows. These efforts consider ideas of compensation and alternatives that 

can be engaged when repair is needed due to partial failure, but they are somewhat 
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cumbersome to describe. In our work, we provide a good solution in terms of 

dependencies that automatically takes care of many of the issues that arise, letting the 

business analyst focus on the parts of the process where more customized dependencies 

are needed. Also, none of the mechanisms support the distinction of vital and non-vital 

parts of the process (with the only option being an alternative scope to capture non-vital 

aspects, making the flow less intuitive). 

 

Regarding the execution environments, these are currently more as interpreters for 

workflows that largely leave transaction handling aside at the high level and assume that 

transactions are managed at lower levels in the execution environment, and possibly 

through the aforementioned repair routes. It would be desirable to include transaction 

management as a more native part of the workflow engines – and again as much of these 

work in an event based fashion, our approach should be able to provide a solution for 

ready implementation.  

 

To conclude, our approach investigates the reliability of long running transactions in a 

conceptual, rather than an implementation dependent way, and as consumers of these 

models are generally business developers, we believe that formalisms should be relatively 

simple to understand, express and reason about. 
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8.3 Future Work 

 

For future research, we intend the following works: 

 

1- Direct future work includes implementation of an operational system reflecting 

this approach and its use in some larger case studies  

2- Providing more expressiveness of the compensation semantics by adding more 

flexibility in compensation composition by: 

(a) Enriching the semantics of partial compensations by allowing customized 

compensations in concurrent scopes.  

(b) Enriching the semantics of comprehensive compensations by allowing the 

source or a target node in a compensation pattern to be a scope node, rather 

than an atomic node. 

(c) Allowing scopes to be atomic by specification, such that if an atomic scope 

fails, it is compensated without interrupting the execution of the LRT. A 

necessary constraint in assigning a scope with the atomic transactional 

property is that the scope cannot trigger the global failure of the LRT, because 

otherwise it will be compensated through comprehensive compensation.  

3- To aim to “keep a running process alive despite of irrecoverable failures” by 

supporting dynamic adaptations of web services/workflows during run time.   

4- Extending the model by adding loop structures, as well as enriching concurrency 

semantics.  
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5- As the number of rules may expand by extending the model with new 

concurrency semantics, a rule-base model checker for the correctness criteria 

discussed in the evaluation section may be implemented. 

 

The research conducted in this thesis raises interesting questions for future investigation: 

 

1- Is it possible to design a reliable transaction management model for unstructured 

workflows, and how far might this benefit from the work done in transforming 

unstructured workflows into structured ones? 

2- Given the formal semantics of individual split and join patterns, can we develop a 

technique to create new scopes patterns by joining splits and joins, and 

automatically define the semantics of the new scope and raise deadlock issues and 

context problems? 
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APPENDIX A – TABLE OF DEPENDENCIES 

 

 

 

 

 
Dep # Dependency Component  

Activations 

ActD.1 𝑨  𝑫  (  )  𝑳 𝑻       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 Main path 𝑝  

ActD.2 𝑨  𝑫  (         )     𝒉       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 First node in a path 

ActD.3 𝑨  𝑫  (𝒏    )   

(𝒏             𝑪𝑪𝑬𝑬𝑫𝑬𝑫)    (  𝒏     𝑰          𝒏          
  𝑨𝑰𝑳𝑬𝑫 )    

Sequential Nodes : 

𝑛𝑜𝑑𝑒  successor of 

𝑛𝑜𝑑𝑒   

ActD.4 𝑨  𝑫  (   𝒉)                 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 1- Concurrent paths of 

AND scope  

2- First path in XOR 

scope 

ActD.5 𝑨  𝑫  (   𝒉)                 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫      𝒉 𝑰 𝑬𝒏      Concurrent paths  of 

OR scope  

ActD.6 𝑨  𝑫  (   𝒉 )   

   𝒉          𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫 

Paths 2..m in XOR 

scope where m>=2 

Completions 

CompLD.1 𝑪   𝑳𝑫  (   𝒉 )   

                 𝑪𝑪𝑬𝑬𝑫𝑬𝑫                   𝑨𝑰𝑳𝑬𝑫) 

 

Path 

CompLD.2 𝑪   𝑳𝑫  (     )   

⋀ (   𝒉          𝑪𝑪𝑬𝑬𝑫𝑬𝑫     𝒉         𝑨𝑰𝑳𝑬𝑫)

     

 

AND scope with m 

concurrent paths 

CompLD.3 𝑪   𝑳𝑫  (     )   

⋀

(   𝒉  𝑰 𝑬𝒏        

(
   𝒉          𝑪𝑪𝑬𝑬𝑫𝑬𝑫  

   𝒉         𝑨𝑰𝑳𝑬𝑫
))

     

 

OR scope with m 

concurrent paths 

Failures 

FailD.1     𝑫  (   𝒉)   

( ⋀ 𝒏   𝑳     𝒏           𝑨𝑰𝑳𝑬𝑫

      

) 

Non-Vital path 

FailD.2     𝑫  (𝑨 𝑫     )    
⋀ (   𝒉          𝑨𝑰𝑳𝑬𝑫     )  

AND scope with m 

paths 

FailD.3     𝑫  (𝑶      )    
(⋀ (   𝒉  𝑰 𝑬𝒏          𝒉          𝑨𝑰𝑳𝑬𝑫     ))   
(𝑶             𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫  (⋀    𝒉  𝑰 𝑬𝒏           

 𝑨𝑳 𝑬))  

OR scope with m 

paths 

Force-Fails 

FFailD.1          𝑫  (𝒏   )  𝒏          𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫      𝒉      
  𝑨𝑰𝑳𝑬𝑫 

Where path=node.superior 

Atomic node/scope 

 

FFailD.2          𝑫  (   𝒉)     𝒉       𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫              
  𝑨𝑰𝑳𝑬𝑫 

Where scope=path.superior 

𝑝 𝑡   𝑝   

FFailD.3          𝑫  (  )  𝑳 𝑻        𝑨𝑰𝑳𝑬𝑫 Main path 𝑝  
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Dep # Dependency Component  

Forward\Backward Compensations  

CompD.1 𝑪   𝑫  (       )          𝑷  𝒉       𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑰   

 

Last node on a 

compensable path 

CompD.2 𝑪   𝑫  (𝒏    )   

superior       𝑪    𝒏    𝒏   
⋀  (𝒏             𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫    𝒏              𝑰𝑷𝑷𝑬𝑫) 

 

A node that has a 

successor on a 

compensable path 

node2=successor(node

1) 

CompD.3 𝑪   𝑫  (     𝒉)                        𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑰   

 

Path within a 

compensable scope 

Compensation Completion  

CpCompLD.1 𝑪 𝑪   𝑳𝑫  (   𝒉)   

(                𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫)                  
   𝑰𝑷𝑷𝑬𝑫) 

Compensable Path  

 

CpCompLD.2 𝑪 𝑪   𝑳𝑫  (     )                   𝒏    𝒏    

( ⋀ (   𝒉𝑳           𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑬𝑫      𝒉𝑳          

      

  𝑶𝑻  𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫) ) 
 

Compensable 

concurrent scope with 

m paths 

Customised Compensations 

CCD.1 𝑪𝑪𝑫  (        )   

𝑳 𝑻       𝑪𝑶𝑴𝑷𝑬  𝑨𝑻𝑰   

Atomic Root node 

CCD.2 𝑪𝑪𝑫  (𝑻         )    ⋀      𝑳     𝑰        

     𝒏

 

 

Atomic Target node to 

n source nodes where 

n≥1 

Customised Compensation Completion 

CCCD.1 𝑪𝑪𝑪𝑫  (𝑳 𝑻)  ⋀ 𝒏     𝑰        

     𝒏

 LRT where n=number 

of atomic nodes 
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APPENDIX B – TABLE OF POLICIES 

 

 
Rule# Policy Component  

Activations  

ActR.1 ON “activation event of LRT” 

IF   LRT.state=NOT-ACTIVATED 

DO activate(LRT) 

LRT  

ActR.2 ON ActDep(𝑝
 
) 

DO activate(𝑝
 
) 

Main execution 

path P0 

ActR.3 ON ActDep(component) 

IF   component.superior.state=ACTIVATED and    

                  component≠p0 

DO activate(component) 

atomic node, 

scope, and 

path≠p0 

Completions  

CompLR.1 ON “successful completion event of atomic node” 

DO succeed(node) 

Atomic node 

CompLR.2 ON succeed(node) 

IF   CompLDep(node.superior)=TRUE 

DO succeed(node.superior) 

Vital and non-

vital path with 

succeeded last 

node 

CompLR.3 ON succeed(path) 

IF   path=𝑝
 
 

DO succeed(LRT) 

LRT 

CompLR.4

  

ON succeed(path) 

IF   path.IsExclusive=TRUE 

DO succeed(path.superior) 

Exclusive scope 

CompLR.5 ON CompLDep(scope) 

IF   scope.state≠failed and 

       FailDep(scope)=FALSE 

DO succeed(scope) 

Concurrent scope 

CompLR.6 ON fail(node) 

IF   ¬node.IsVital  and  node.superior.IsVital and 

CompLDep(node.superior)=TRUE 

           DO succeed(node.superior) 

vital path with 

failed non-vital  

last node 

CompLR.7 ON fail(node) 

IF   ¬node.IsVital  and  ¬node.superior.IsVital and 

CompLDep(node.superior)=TRUE and 

FailDep(node.superior)=FALSE 

           DO succeed(node.superior) 

non-vital path 

with failed non-

vital  last node 
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Rule# Policy Component  

Failures 

FailR.1 ON “failure/cancellation event  for atomic node”  
DO fail(node)  

Atomic node 

FailR.2 ON  fail(node)  

IF    node.superior.state=ACTIVATED and 

       node.IsVital        

DO fail(node.superior) 

vital path 

(bottom-up 

propagation ) 

FailR.3 ON   fail(path) 

IF     path=𝑝  

DO  fail(LRT) 

LRT 

FailR.4 ON  fail(path) 

IF    ¬path.HasAlternative and path.IsExclusive 

DO fail(path.superior) 

Exclusive scope 

FailR.5 ON  fail(path) 

IF    path.IsVital=TRUE and 

       Path.IsConcurrent 

DO fail(path.superior) 

concurrent scope  

(bottom-up 

propagation ) 

FailR.6 ON FailDep(path) 

DO fail(path) 

 non-vital path  

FailR.7 ON FailDep(scope) 

IF   scope.state≠failed  

DO fail(scope) 

Concurrent scope  

 

Force-Fails 

FFailR.1 ON FFailDep(node) 

IF   node.type=ATOMIC 

DO abort(node)  

Atomic node- 

Propagation  

 

FFailR.2 ON FFailDep(node) 

IF   node.type=SCOPE 

DO fail(node)  

scope -Propagation 

 

FFailR.3 ON FFailDep(path)  

DO fail(path)  

Path- Propagation 

 

FFailR.4 ON “cancellation event of LRT” 

IF   LRT.State=ACTIVATED 

DO fail(LRT)  

LRT 

Forward\Backward Compensations  

CompR.1 ON fail(path) 

IF    path.hasAlternative and  

      node.superior.state=ACTIVATED 

           DO compensate(path) 

Exclusive path with 

alternative 

CompR.2 ON CompDep(path) 

IF   LRT.State=ACTIVATED and (path.state=SUCCEEDED   

      or path.state=FAILED ) 

DO compensate(path) 

Compensable path 

previously 

succeeded or failed 

 

CompR.3 ON CompDep(node) 

IF    LRT.State=ACTIVATED and node.Type=ATOMIC and  

       node.State=SUCCEEDED  

DO compensate(node) 

succeeded Atomic 

node 

CompR.4 ON CompDep(node) 

IF    LRT.State=ACTIVATED and node.Type=ATOMIC and  

       (node.State=FAILED or node.state=NOT-ACTIVATED 

        Or nodeState=ABORTED)  

DO skip(node) 

Non succeeded 

atomic node 

CompR.5 ON CompDep(node) 

IF    LRT.State=ACTIVATED and node.Type=SCOPE  and  

      (node.State=SUCCEEDED or node.state=FAILED) 

DO compensate(node) 

Succeeded or failed 

scope 

CompR.6 ON CompDep(node) 

IF    LRT.State=ACTIVATED and node.Type=SCOPE  and  

       node.state=NOT-ACTIVATED 

DO skip(node) 

Not activated scope 
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Rule# Policy Component  

Compensation Completions 

CpCompLR.1 ON “internal compensation completion event of atomic node” 

IF   LRT.State=ACTIVATED 

DO compensated(node) 

Atomic node 

CpCompLR.2 ON CpCompLDep(path) 

DO compensated(path) 

 

Path  

CpCompLR.3 ON CpCompLDep(node) 

IF   node.Type=SCOPE and node.state≠SKIPPED 

DO compensated(node) 

Concurrent Scope  

CpCompLR.4 ON compensated(path) 

IF   path.IsExclusive and 

     Path.superior.state=compensating 

DO compensated(path.superior) 

Exclusive path  

Customised Compensations 

CCR.1 ON fail(LRT) 

IF   “no nodes executing(activated/compensating)” 

DO compensate(LRT) 

LRT 

CCR.2 ON CCDep(node) 

IF   LRT.State=COMPENSATING  and  

      node.state=SUCCEEDED 

DO compensate(node) 

Succeeded atomic 

node 

CCR.3 ON CCDep(node) 

IF   LRT.State=COMPENSATING  and  

      node.state≠SUCCEEDED 

DO node.Visited=TRUE; 

Non succeeded 

Atomic node 

Customised Compensation Completion 

CCCR.1 ON “compensation completion event of an atomic  

         node”  

IF    LRT.state=COMPENSATING 

DO  compensated(node); 

        node.IsVisited=TRUE; 

Atomic 

compensating node 

CCCR.2 ON CCCDep(LRT) 

DO  compensated(LRT) 

LRT 
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APPENDIX C – An assessment of COMPMOD model based on 

Workflow Patterns Initiative 

 

A workflow pattern is (1) Fully Supported (FS) if COMPMOD provides an explicit 

operational semantics for the pattern, (2) Implicitly Supported (IS) if the pattern’s 

semantics are embedded in the COMPMOD’s management mechanism, (3) Partially 

Supported (PS) if partial operational semantics of the pattern is supported, (4) Achievable 

(A) if the operational semantics of the pattern are applicable given the current 

COMPMOD’s infrastructure, or (5) Not Supported (NS) if the current semantics in 

COMPMOD does not support the pattern. Sequence, split and join patterns descriptions 

have been listed in Chapter 3. The full description of the rest of the patterns can be found 

(Russell et al., 2006). 

 

 

Pattern  Score  Motivation 

1 (sequence) FS Through activation and completion semantics of execution paths 

2 (Parallel Split) FS Through activation semantics of AND scopes 

 

3 (Synchronization) FS Through completion and failure semantics of AND scopes 

 

4 (Exclusive Choice) FS Through activation semantics of XOR scopes with richer semantics 

that allows for branches to be executes alternatively 

 

5 (Simple Merge) 

8 (Multiple Merge) 

NS The patterns are applicable on unstructured workflows to merge 

distinct threads of executions.  However, a structured counterpart for 

these patterns is the XOR-join, and it is supported through 

completion, failure and compensation semantics of XOR scopes. 

6 (Multi-Choice) FS Through activation semantics of OR scopes. 

 

7 (Structured 

Synchronization 

Merge) 

FS Through completion and failure semantics of OR scopes 

 

9 (Structured 

Discriminator) 

A Through similar analysis as shown in Example 2, Section 7.4.1, 

except that subsequent completions of discriminable paths are 

allowed. The decision as to how to respond to failures of subsequent 

completions must be made explicit. 

 

10 (Arbitrary Cycles) NS The pattern is applicable to unstructured workflows, to allow for 

unstructured loops and iterations in the process. 

 

11 (Implicit Termination) FS Through implicit termination state of components. This pattern 

indicates the ability to specify when a process or sub process 

terminates its execution, and no remaining work is expected either 

now or at any time in the future. 

 

12 (Multiple Instances 

without 

Synchronization) 

13 (Multiple Instances 

with a priori Design-

Time Knowledge) 

14 (Multiple Instances 

with a priori Design-

NS These patterns support multiple instances of executions of the same 

activity (sequential or concurrent instances). The patterns describe 

different ways of creating multiple instances with the option of 

synchronizing them upon completion or not synchronizing them. 

These patterns are applicable in loop structures. Loop structures are 

planned as the future work of this research.  
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Time Knowledge)  

15 (Multiple instances 

without a priori run-

time knowledge) 

16 (Differed Choice) A This pattern is similar to exclusive choice but the activation of the 

chosen path depends on human or operating system interaction. It 

could be achievable in COMPMOD by allowing the activation of the 

chosen path to be triggered by an internal activation event instead of 

the path being activated by an activation dependency. 

 

17 (Interleaved Parallel 

Routing) 

A This pattern allows mutual exclusion of activation of nodes on 

parallel paths, such that only one node on the interleaved rout can be 

activated at any time. This is achievable in COMPMOD by defining 

activation dependencies between interleaved nodes. Further analysis 

is required to study the impact of the pattern on partial 

compensations.    

 

18 (Milestone) NS  

19 (Cancel Activity) PS Through FailR.1 policy.  The pattern allows for an enabled activity to 

be withdrawn before execution or disabled after commencing 

execution. COMPMOD only supports the cancelation of activated 

atomic nodes where cancelations are treated as failures and follow 

failure semantics. 

 

20 (Cancel Case) PS Through force-failing mechanism of scopes. The pattern allows for 

cancelling a complete process with possibly executing sub processes 

based on user interaction. The pattern is achievable through allowing 

internal cancellations of activated scopes; however its full support 

requires further analysis. 

 

21 (Structured Loop) NS This pattern describes the ability of executing an activity or sub 

activities a repeated number of times. Loop structures are planned as 

the future work of this research.  

 

22 (Recursion) NS The pattern describes the ability of an activity to invoke itself during 

its execution or invoking an ancestor. 

 

23 (Transient Trigger) FS The pattern describes the ability for an activity to be triggered by a 

signal from another part of the process. Triggers constitute the main 

concept on which COMPMOD is based on. They are referred to as 

transient to defer them from the next pattern, and they are transient 

according to (Russell et al., 2006)  in the sense that they are lost if 

not acted on immediately by the receiving activity.  

 

24 (Persistent Triggers) PS Through internal cancellation events of LRT or atomic nodes. The 

pattern describes the ability for an activity to be triggered by a signal 

from another part of the process or from the external environment. 

They are persistent by being retained by the workflow until they can 

be acted on by the receiving activity. 

 

25 (Cancel Region) NS The pattern describes the ability of disabling a set of activities that 

are not a connected subset of the overall process model. 

 

26 (Cancel Multiple 

Instance Activity)  

27 (Complete Multiple 

Instance Activity)  

28 (Blocking 

Discriminator) 

NS Loop structures and multiple instance activities are planned as the 

future work of this research.  

 

29 (Cancelling 

Discriminator) 

A As discussed in Example 2, Section 7.4.1 
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30 (Structured Partial 

Join) 

A AS discussed in Example 3, Section 7.4.1 

 

31 (Blocking Partial Join) NS This partial join pattern is intended for loop structures 

 

32 (Cancelling partial 

Join) 

A Through similar analysis of partial join in Example 3 and 

cancellation analysis of undesired activated paths in Example 2 in 

section 7.4.1 

 

33 (Generalized AND-

Join)  

34 (Static Partial Join for 

Multiple Instances) 

35 (Cancelling Partial 

Join for Multiple 

Instances) 

36 (Dynamic Partial Join 

for Multiple 

Instances) 

NS These patterns describe variations of join semantics for multiple 

instances. Loop structures are planned as the future work of this 

research.  

 

 

37 (Acyclic 

synchronization 

Merge)  

38 (General 

Synchronization 

Merge) 

NS These two patterns are variations of the OR-join and they are 

proposed for unstructured workflows. COMPMOD supports only 

structured workflows. 

 

39 (Critical Section) NS The pattern allows for two or more connected sub graphs to be 

identified as critical sections, such that only one critical section can 

be active at any time during runtime.  

 

40 (Interleaved Routing) NS The pattern allows for a set of activities to be executed once such that 

no two activities can be active at the same time. Execution progresses 

to the next step once all interleaved activities completed their 

executions. 

 

41 (Thread Merge)  

42 (Thread Split) 

NS Loop structures and multiple instance activities are planned as the 

future work of this research.  

 

43 (Explicit Termination) NS As described in the reference, this pattern allows the termination of a 

process when execution reaches and end node even if there is 

remaining work in the process instance, it is assumed that the 

remaining work must be cancelled. The description is not clear, and 

we assume it is proposed for unstructured workflows. 
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