

MAINTAINING TRANSACTIONAL INTEGRITY IN LONG

RUNNING WORKFLOW SERVICES: A POLICY-DRIVEN

FRAMEWORK

Thesis submitted for the degree of

Doctor of Philosophy

At the University of Leicester

By

Manar Salamah Ali

Department of Computer Science

University of Leicester

2012

ABSTRACT

Business to Business integration is enhanced by Workflow structures, which allow for

aggregating web services as interconnected business tasks to achieve a business outcome.

Business processes naturally involve long running activities, and require transactional

behavior across them addressed through general management, failure handling and

compensation mechanisms. Loose coupling and the asynchronous nature of Web Services

make an LRT subject to a wider range of communication failures. Two basic

requirements of transaction management models are reliability and consistency despite

failures. This research presents a framework to provide autonomous handling of long

running transactions, based on dependencies which are derived from the workflow. The

framework presents a solution for forward recovery from errors and compensations

automatically applied to executing instances of workflows. The failure handling

mechanism is based on the propagation of failures through a recursive hierarchical

structure of transaction components (nodes and execution paths). The management

system of transactions (COMPMOD) is implemented as a reactive system controller,

where system components change their states based on rules in response to triggering of

execution events. One practical feature of the model is the distinction of vital and non-

vital components, allowing the process designer to express the cruciality of activities in

the workflow with respect to the business logic. A novel feature of this research is that

the approach permits the workflow designer to specify additional compensation

dependencies which will be enforced. A notable feature is the extensibility of the model

that is eased by the simple and declarative based formalism. In our approach, the main

concern is the provision of flexible and reliable underlying control flow mechanisms

supported by management policies. The main idea for incorporating policies is to manage

the static structure of the workflow, as well as handling arbitrary failure and

compensation events. Thus, we introduce new techniques and architectures to support

enterprise integration solutions that support the dynamics of business needs.

DECLARATION

This thesis reports on work undertaken in the Department of Computer Science,

University of Leicester, supervised by Dr. Stephan Reiff-Marganiec. I hereby declare

that the contents of this submission have not previously been published for a degree or

diploma at any other university or institute.

All the material submitted is the result of my own research, except where otherwise

indicated.

The research work presented in some sections has been previously published: in

particular:

 A brief description of COMPMOD architecture that is presented in Chapter 4 and

the failure handling mechanism presented in (Chapter 5, section 5.4) has been

published in (Ali and Reiff-Marganiec, 2012)

 The compensation mechanism presented in Chapter 6 has been published as a

Book Chapter in "Service-driven Approaches to Architecture and Enterprise

Integration", IGI Global, 2013, ISBN 978-1-4666-4193-8. The title of the book

chapter is: “Maintaining Transactional Integrity in Long Running Workflow

Services: A Policy-driven Framework" (Authors: Reiff-Marganiec and Ali.)

Manar Salamah Ali

Leicester, October 2012

ACKNOWLEDGMENTS

I would like to convey my sincere gratitude to my supervisor Dr. Stephan Reiff-

Marganiec for his helpful advices, continuous support and valuable feedback on the

context of my research and thesis, and his constant encouragement during the course of

my PhD study. For his kind supervision and guidance, I’m sincerely grateful.

My exceptional obligations are to my dearest parents, Mr. Salamah and Mrs. Muazzez,

for all their love, support and faith in me, for being my inspiration, and for making me

everything I am. For all this, I will be forever thankful.

I would like to thank my loving family; my sisters Dr.Inas and Mrs.Nibras , my brother

Mr. Abdullah, and my dear friends Mrs. Dina Mulla and Mr. Mustafa Jabbar for their

encouragement, mostly for being there for me as well as for their patient listening to all

my worries, over and over again without complaining. For all this, I owe them much.

I would like to acknowledge Dr. Ammar Amin, the Supervisor General of the Joint

Supervision Program, King Abdul Aziz University. For his great support, I am

truly thankful.

I would like to express my heartfelt appreciation and gratitude to Mr. Massimiliano

Canali for his valuable support and encouragement during the final year of my PhD work.

For his devotedness, I am genuinely indebted.

My love and admiration for my three kids, Layan, Lara, and Ammar. Without their

patience, relentless praise and their shouldering of great responsibilities during my oft

recurring absence from home, I would never have been able to complete this work. For

their courage, I am full of pride and humble gratitude.

Thank you!

Manar

Contents

Chapter 1: Introduction ..1

1.1 Motivation ..1

1.2 Research Challenges ..2

1.3 LRT Modeling Requirements ..9

1.4 Modeling Objectives ..13

1.5 Research Questions and Statement ..13

1.6 Contribution ...14

1.7 Model Overview ..16

1.8 Thesis Structure ...18

Chapter 2: Background ...20

2.1 Introduction ..20

2.2 Data-Base Centric Transactions ...21

2.3 Transactional Workflows ...22

2.4 LRT Modeling Approaches in Web Service Settings ..24

2.4.1 Formal Modeling ..25

2.4.2 Orchestration Languages ..26

2.5 Limitations of Selected Approaches ..27

2.5.1 E-supply chain case study ...28

2.5.2 Compensation Mechanism in WS-BPEL ..30

2.5.3 Compensation Mechanism in Compensation Spheres34

2.6 Conclusion ...37

Chapter 3: Fundamentals..39

3.1 Introduction ..39

3.2 Workflow patterns ...40

3.3 Informal description of COMPMOD patterns ...46

3.3.1 Sequence Pattern ...47

3.3.2 Scope Patterns ...47

3.3.2.1 Concurrent Scopes ..49

3.3.2.1 Exclusive Scopes ..52

3.4 Reliability and Integrity Issues ..55

3.5 Transactional Patterns ..57

Chapter 4: Model Architecture ..60

4.1 Introduction ..60

4.2 Features of COMPMOD ..60

4.3 Representations of Nested LRTs ...63

4.3.1 Workflow Model ...63

4.3.2 Hierarchical Structure Model ..65

4.3.3 Transactional operators and scopes ..66

4.3.4 Execution paths ...69

4.3.5 Vitality of components ..71

4.4 Workflow of OP Case Study in COMPMOD ..74

4.5 Reactive Management and Execution states ..77

4.6 Hierarchical Transactional Dependencies and Policies ...80

4.6.1 Dependencies ..81

4.6.2 Policies ..83

4.7 Model Assumptions ...86

4.7.1 Vitality Assumptions ..86

4.7.2 Failure Assumptions ...86

4.7.3 Cancellation assumptions..87

4.7.4 Compensation assumptions ...88

Chapter 5: Management Mechanism ...90

5.1 Introduction ..90

5.2 Path and Scope Execution ..91

5.2.1 Sequence Control ..92

5.2.2 Concurrency Control ...98

5.3 Control Management Mechanism ..103

5.3.1 Activation Semantics ..104

5.3.2 Completion Semantics ..107

5.4 Failure-Handling Mechanism ..112

5.4.1 Failure Semantics ..115

5.4.2 Force-Fail semantics ...117

5.5 Examples ..120

5.5.1 Control Flow Dependencies of OP Case Study ..120

5.5.2 E-Booking Example ..121

5.5.3 Nested LRT Sample ..123

Chapter 6: Compensation Mechanism...127

6.1 Introduction ..127

6.2 Partial Compensation ...128

6.2.1 Compensational Attributes..131

6.2.2 Dependencies Semantics ...133

6.2.2.1 Compensation Dependencies ..135

6.2.2.2 Compensation Completion Dependencies136

6.2.3 Partial Compensation Mechanism ..138

6.2.4 Example ..143

6.3 Comprehensive Compensation ..146

6.3.1 Customized Compensation Dependency Graph ...148

6.3.2 Compensational Attributes..152

6.3.3 Validity of Compensation Dependencies..153

6.3.4 Compensational Behavior ...156

6.3.5 Customized Compensation Dependencies ..157

6.3.6 Customized compensation mechanism ...158

6.3.7 Examples ...160

6.3.7.1 Customized Compensation Dependencies for OP Case Study160

6.3.7.2 Comprehensive Compensation Mechanism for Sample LRT3163

Chapter 7: Verification and Extensibility of COMPMOD ..165

7.1 Introduction ..165

7.2 Verification Approach ...166

7.3 Soundness of WF model ..168

7.3.1 Consistent Rule Invocation ...172

7.3.2 Deadlock Absence ..177

7.3.3 Reachability ..178

7.3.4 Proof-of-concept by Example ...179

7.4 Extensibility ...181

7.4.1 Examples ...183

Chapter 8: Conclusions and Future Work ..186

8.1 General Remarks ..186

8.2 Thesis Conclusions ..189

8.3 Future Work ...192

APPENDIX A – TABLE OF DEPENDENCIES ..194

APPENDIX B – TABLE OF POLICIES...196

APPENDIX C – An assessment of COMPMOD model based on Workflow

Patterns Initiative ...199

BIBLIOGRAPHY ..202

LIST OF FIGURES

Figure 1.1 Place Order Business Process Scenario………………………………………… 7

Figure 2.1 Supplier-Manufacturer outsourcing business process OP……………………… 28

Figure 2.2 WS-BPEL process for supplier-manufacturer outsourcing example…………… 31

Figure 2.3 Compensation Spheres borrowed from (Leymann & Roller, 2000) p. 271….…. 36

Figure 2.4 applying compensation spheres on outsourcing busing process………………... 37

Figure 3.1 Sequence pattern in supplier sales process…………………………………….... 47

Figure 3.2 A generic scope pattern representation………………………………………….. 48

Figure 3.3 AND-scope pattern in OP process………………………………………………. 50

Figure 3.4 OR-scope pattern in Supply Chain process……………………………………... 51

Figure 3.5 Delivery XOR-scope pattern……………………………………………………. 55

Figure 4.1 A WF showing level 0 of a sample LRT……………………………………….. 64

Figure 4.2 A WF showing multi levels of a sample LRT………………………………….. 65

Figure 4.3 Hierarchal Structure of WF schemas…………………………………………… 66

Figure 4.4 Scope Structure…………………………………………………………………. 69

Figure 4.5 OP workflow in COMPMOD…………………………………………………… 75

Figure 4.6 STD for LRT……………………………………………………………………. 78

Figure 4.7 STD for atomic nodes…………………………………………………………… 79

Figure 4.8 STD for scope nodes……………………………………………………………. 79

Figure 4.9 STD for execution paths………………………………………………………… 80

Figure 5.1 Execution path scenarios with respect to vitality……………………………..... 93

Figure 5.2 Concurrent scope cases with respect to vitality of encapsulated paths………… 100

Figure 5.3 E-booking Example…………………………………………………………….. 122

Figure 5.4 An execution instance of LRT in Figure 4.2…………………………………….. 124

Figure 5.5 Scope3’s Sub-Hierarchy Tree ………………………………………………….. 126

Figure 6.1 Sample LRT2……….. 129

Figure 6.2 A caption of scope2.p1 in sample LRT2…………………………………………………………………... 144

Figure 6.3: A Sample LRT3 with customized compensation dependencies………………… 149

Figure 6.4 Dependency Graph for sample LRT3………………………………………….. 152

Figure 6.5 Final OP workflow schemas……………………………………………… 161

Figure 7.1 Verification Approach Chart……………………………………………..…….. 168

Figure 7.2 Rule Invocation Graph for sample LRT4………………………………………………………………... 171

Figure 7.3 STDs with Management Rules………………………………………………… 176

Figure 7.4 Rule invocation graph for OP…………………………………………………. 181

LIST OF TABLES

Table 2.1 Compensation behavior WS-BPEL vs. COMPMOD……………………….…… 34

Table4.1 Vitality attributes of OP components……………………………………….…….. 76

Table 4.2 Path attributes of OP case study…………………………………………….……. 77

Table 4.3 STT of actions……………………………………………………………….…… 80

Table 5.1 Activation Dependencies………………………………………………………… 105

Table 5.2 Activation Policies ………………………………………………………………. 105

Table 5.3 Completion Dependencies……………………………………………………….. 107

Table 5.4 Completion Policies ……………………………………………………………... 108

Table 5.6 Failure Dependencies ……………………………………………………….…… 117

Table 5.7 Failure Policies ……………………………………………………………..……. 117

Table 5.8 Force-fail Dependencies……………………………………………………...….. 118

Table 5.9 Force-fail Policies……………………………………………………………..…. 118

Table 5.10 Control flow dependencies of OP case study……………………………….….. 121

Table 5.11Execution Instances of ………………………………………………...… 124

Table 6.1 Compensation Dependencies………………………………………………….…. 136

Table 6.2 Compensation Completion Dependencies…………………………………….…. 138

Table 6.3 Compensation Policies…………………………………………………………… 139

Table 6.4 Compensation Completion Policies……………………………………………… 139

Table 6.5 Current Execution State Instances of failed scope2.p1 in figure 6.2……………... 144

Table 6.6 Current Execution State Instances of compensated scope2.p1 in figure 6.2…..…. 146

Table 6.7 Customized compensation dependencies…………………………………….….. 158

Table 6.8 Customized compensation policies…………………………………………….... 158

Table 6.9 Customized compensation dependencies for OP activities…………………….... 162

Table 6.10 Execution instances of LRT3…………………………………………………… 164

LIST OF CHARTS

Control Chart 1. Activation of LRT………………………………………………………… 106

Control Chart 2. Activation of Path………………………………………………………… 106

Control Chart 3. Activation of Node………………………………………………………. 106

Control Chart 4. Successful Completion of Node………………………………………….. 109

Control Chart 5. Successful Completion of Path………………………………………… 110

Control Chart 6. Completion of a Concurrent Scope………………………………………. 111

Control Chart 7. Failure of non-Vital Node………………………………………………… 111

Control Chart 8. Failure of a Vital Node…………………………………………………… 114

Control Chart 9. Failure of non-vital Path…………………………………………………. 115

Control Chart 10. Force-Fail Scope………………………………………………………… 119

Control Chart 11. Force-Fail LRT…………………………………………………………… 120

Control Chart 12. Compensation of Path…………………………………………………… 140

Control Chart 13. Compensation of node………………………………………………….. 141

Control Chart 14. Compensation Completion or Skipping of a node……………………… 142

Control Chart 15. Compensation Completion of a Path…………………………………… 143

Control Chart 16. Comprehensive Compensation ………………………………………… 159

Control Chart 17. Customised compensation of atomic nodes……………………………. 160

1

Chapter 1

Introduction

1.1 Motivation

Two widely demanding trends, both in web technologies and in the business world, drive

and motivate the research in this thesis. In the business world, the trend is towards the

collaboration of companies and enterprises as networked organizations. This is

accomplished by adopting collaborative mechanisms of business processes integration

within a large community of business partners. On the other hand, web technologies are

transforming the web from an infrastructure for sharing information to an infrastructure

where networked organizations can collaborate and integrate their business interests.

Essentially, Service Oriented Computing (SOC) has had a significant impact as the

computing paradigm to support collaborative Business to Business (B2B) integration

Chapter 1. Introduction

2

over the internet (Papazoglou and Georgakopoulos, 2003). Service Oriented

Architectures (SOA) forms a foundation for rapid application integration and automated

business processes, ideally through web service implementations (Newcomer and

Lomow, 2004).

In this chapter, we highlight the main challenges associated with the web service based

business process modeling and management. These challenges enact modeling

requirements that must be satisfied in order to achieve one general common objective:

correctness and reliability of the management model. We discuss these requirements and

state our research questions, research statement, model overview and assumptions.

1.2 Research Challenges

Web services are “self-describing, open components that support rapid, low-cost

composition of applications” (Papazoglou and Georgakopoulos, 2003). Web services are

offered by service providers (business organizations) by implementing services, together

with their description and associated technical and business support. A B2B process can

then be composed by aggregating web services to form a composite service, in order to

achieve a required business outcome. Autonomy, loose coupling, the heterogeneous

nature of web services and human interaction for some tasks makes a business process

into a long running one.

1.2 Research Challenges

3

A composite service would typically entail a complex structure of interrelated activities

that would exhibit a high degree of concurrency and interrelationship. Therefore its

composition requires flexibility in terms of the construction of the overall business

process. Workflow systems integrate, automate and manage B2Bs and enable business

processes to fulfill their business goals through flexible representations of the control

flow of their tasks. A service-based workflow process is a long running workflow,

composed of web services that relate to each other through workflow constructs such as

split and join, to allow for sequencing, parallelism or choices in the control flow. A

workflow management system is required to coordinate the sequence of service

invocations within a process, to manage control flows and data flows between web

services, and to ensure execution of the process as a reliable transaction unit (Yan et al.,

2005).

One of the important aspects of management of B2B long running processes is to ensure

their reliability, consistent outcomes and the correct execution of the composite services.

In particular, in case of failure of some of the component services, it is required that the

business task remains “stable”. Autonomy and loose coupling of web services makes a

composite service more prone to failure than other business processing environments, in

that the failure of services can happen at any time, with a higher probability, and

therefore an efficient failure handling mechanism is required. In addition, a collaborative

B2B process usually involves different parties, and spans different organizations; thus,

correct and reliable execution is an important aspect of business integration which

Chapter 1. Introduction

4

guarantees that all parties involved in the business process always maintain their systems

consistently, especially in the case of failure occurrences.

Reliability, failure handling and correct execution behavior constitute the main properties

on which transaction management models are based and where these properties are

typically inherent within their execution semantics. Transaction management has been

widely exploited in the literature as a mean of correct execution of database processes

and has resulted in a plethora of proposed transaction models. The ACID correctness

properties (Gray, 1981)(Haerder and Reuter, 1983, Özsu and Valduriez, 1991) establish

the main properties on which other database transaction models have built their

correctness.

In essence, an ACID transaction is (a) Atomic (all-or-nothing), by which all operations

of a transaction are expected to either successfully commit or if the transaction fails

(aborts), then all its effects are undone (rolled back), (b) Consistent: the transaction

moves the state of the system from one consistent state to another consistent state, i.e.

requires the transaction to be correct, (c) Isolated: this requires that correct concurrent

transactions execute as if they are sequenced, and (d) Durable: this requires that once a

transaction is committed then its outcome is made permanent in spite of future failures.

To achieve overall correctness of transactions, different concurrency and recovery

protocols have been proposed to ensure atomicity. These protocols mainly depend on the

exclusive locking of shared resources for the duration of the transaction, e.g. the two

phase locking protocol in (Moss, 1982).

1.2 Research Challenges

5

As a result, in traditional database transactions, it is a requirement for transactions to

enforce ACID properties, so as to ensure that only consistent state changes take place in

the presence of concurrent access or failures. Even in complex business applications,

ACID properties ensured that consistency of state is preserved. It is a very useful fault

tolerance technique when multiple or remote resources are shared. The atomicity property

ensures a reliable fault handling mechanism, but ACID transactions are regarded as

“short-lived” entities, running on tightly coupled systems.

Applying ACID properties in long processing environments will oblige locking resources

for long periods of time, which is inappropriate. Atomicity in long running transactions is

not a straightforward notion, since it is not always possible to semantically undo the

effects of all tasks in the transaction, due to the complexity of the transaction model and

the nature of the business tasks – tasks can mean anything from a database update

operation to sending email to a client or shipping goods. Instead, ACID properties are

relaxed to suit long running transaction requirements where the atomicity requirement is

replaced with the concept of Compensation. Compensation in long running transactions

defines the behavior of the transactions in the case of occurrence of failures or

cancellations. Failures need to be handled correctly, to ensure overall system consistency

and data integrity.

Compensation was first introduced in the saga model (Garcia-Molina and Salem, 1987)

where a long running transaction consists of a set of ACID transactions, the saga itself is

not ACID. Failure atomicity is guaranteed for sub transactions such that when one fails, it

Chapter 1. Introduction

6

is aborted and retried through forward recovery. If the saga fails, it is aborted, and all

committed sub transactions are compensated in backward order by running compensators

associated with each sub transaction.

The compensation concept has been adopted in long running transaction models as a

mean of recovery and reliability in the case of failure occurrences; primarily to relax

atomicity of ACID transactions. Compensation tends to undo effects of previously

completed tasks. Therefore, if an LRT failed, all previously completed activities are

compensated by running their compensators. Generally, LRT management models apply

compensation of activities using two standard methods: (1) Forward order: when a

recoverable failure occurs, a subset of LRT activities are compensated in the reverse

order of their completion order until a safe point is reached and then the same activities

are retried and (2) Backward order: in the case of irrecoverable failures, the LRT fails and

all previously completed activities are compensated in reverse order of their completions:

that is, reverse order in case of sequenced tasks and parallel or any order in case of

concurrent tasks. However, whatever the order by which compensations are executed,

this order is always enforced by the structure of the LRT model being applied, and results

in a long running compensating transaction.

In real B2B applications, it is the case that business process logic requires that

compensation logic diverges from the standard compensation order that is obliged by the

LRT structure by freely incorporating compensation logic into business logic. The

restricted backward recovery mechanism makes implementing an arbitrary order for

1.2 Research Challenges

7

compensations not a straight forward process. Furthermore, tasks that are not

compensationally independent may execute their compensations in parallel.

A motivating example is the following e-procurement workflow case study ‘Place Order’

workflow:

The dashed arrows represent compensation logic

Figure 1.1 Place Order Business Process Scenario

The business\compensation logic in this e-procurement case study states as follows: if

the transaction is compensated, then it has to be guaranteed that the compensators of

UpdateCustomerAccount and ReserveGoods can be executed only after the Payment has

completed its compensation. With the default backward compensation mechanisms, if

UpdateCustomerAccount was completed after Payment has been completed, then,

UpdateCustomerAccount will be compensated before Payment has been refunded, or

they could both compensate concurrently which contradicts the compensation logic of

this specific LRT. Therefore, and in the context of business process logic, we view an

LRT as two transactions represented by one schema: the transaction in its normal

intended form, and a compensating transaction.

Chapter 1. Introduction

8

Collaborative B2B business applications normally include tasks running concurrently as

part of the overall transaction, which requires consistent and correct modeling of their

behavior. Two important issues regarding concurrency execution are (a) the reliable

modeling of the synchronization of concurrent tasks and (b) the prevention of possible

deadlocks. Concurrency modeling is usually influenced by the underlying paradigm for

representing transactions and the protocols used for the interactions between transaction

tasks. The more flexible the transaction representation paradigm is, the more challenging

it becomes to define a correct behavior for concurrency.

The increasing availability of business processes is an important feature to the practicality

of a proposed model. This could be accomplished in many ways, but more importantly,

by providing compensation techniques to allow for tolerable failures to be recovered

without interrupting the normal processing path of the business process. Availability can

be further increased by distinguishing between crucial tasks that must complete

successfully and those tasks that are less crucial and their failure is tolerable and will not

require any further actions.

Externalizing management aspects from actual execution aspects of process tasks

increase the practicality of business process modeling. First, operational semantics can be

captured at a higher abstract level than the actual executing tasks, allowing for

implementing different methods for recovery without being tied to the underlying

structure of the process. Second, it is a good way to provide the management model with

extensibility of its operational semantics by adding new semantics. Event-Condition-

1.2 Research Challenges

9

Action rules are a natural candidate to fulfill management externalization and for

implementing this kind of functionality.

1.3 LRT Modeling Requirements

As an essential part of conducting this research, we have defined a set of LRT modelling

requirements. These requirements are derived from the literature provided on LRT

modelling approaches as well as from analysis of a number of example business

processes.

Principally, our Long Running Transaction is:

1- Web service based: tasks in the LRT are web services that are composited to

achieve a business outcome.

2- Transactional: the modeling of LRT exhibits transactional semantics.

3- A workflow: the LRT is represented as a workflow schema with arbitrary levels

of nested tasks.

4- A Reactive Management Model: it is executed in an environment where changes

are detected as events and automatically responded to by applying appropriate

execution logic through management policies.

From a web-based business process perspective, LRT modeling imposes the following

requirements (Aguilar-Saven, 2004; Papazoglou, 2003; Peltz, 2003):

REQ. 1 Transactional support to guarantee consistent outcome for participating parties.

REQ. 2 Flexible representation of complex web service compositions that allows

nesting and concurrency which naturally occurs in business processes.

Chapter 1. Introduction

10

REQ. 3 Recovery protocols to undo completed tasks and to choose another acceptable

execution path (Dalal et al., 2003).

REQ. 4 Composition of web services must be supported with failure handling

mechanisms that allow some failures to be tolerable and/or compensable while

others could fail the business process from successfully completing depending

on the crucially of the task to the overall outcome of the business process.

One of the main differences between a traditional transactional model and a loosely

coupled LRT is that the former is data-centric while the latter is activity-centric or more

generally, process-aware (Reichert & Weber, 2012). Therefore, from the transactional

perspective, LRT modeling imposes the following requirements (Colombo & Pace, 2012;

Dalal et al., 2003; Dayal, Hsu, & Ladin, 1991):

REQ. 5 Transactions support nesting and concurrent execution, but they are not

flexible enough to capture the highly collaborative and concurrent nature of

real B2B processes and hence more flexibility in representation is required as

such to allow for selective and alternative choices.

REQ. 6 Transactions’ recovery is based on failure handling mechanisms that are

inherent in their semantics which delimits flexibility of expressing

compensation logic of the business process. Therefore, the failure handling

mechanisms should be separated from execution mechanisms, and both should

operate in tandem to achieve correct recovery mechanisms.

From the workflow perspective, LRT modeling imposes the following requirements:

1.3 LRT Modeling Requirements

11

REQ. 7 Control flow of workflows should be supported by transactional semantics in

order to achieve a reliable control flow (Bhiri et al., 2006a).

REQ. 8 Synchronization of concurrent tasks should be formally defined to resolve

potential operational ambiguities and potential deadlock situations (Russell et

al., 2006).

REQ. 9 Extensibility of a model’s operational semantics is an important requirement of

modeling which facilitates additions of new control flow constructs to comply

with web service composition requirements and to confirm the practicability of

the model.

REQ. 10 Transaction support for workflows requires well-formed infrastructure and

well-formed relationships between the correlated tasks and hence transactional

workflows require well-formed structure applied to the workflow schemas

(Kiepuszewski, Hofstede, & Bussler, 2000).

From the compensation perspective, LRT modeling imposes the following requirements

(Colombo & Pace, 2012; Greenfield et al., 2003):

REQ. 11 Separation of failure handling and compensation handling semantics.

REQ. 12 A mechanism for applying partial compensations that is integrated with the

failure handling semantics as part of the failure recovery process. If failure

handling requires compensation applied to completed tasks, this can be done

without interrupting the execution of the transaction, i.e. tasks that are not

interrupted with failures, will continue their executions.

REQ. 13 Flexibility in incorporating compensation logic into business logic.

Compensation semantics should not be enforced only by the structure of the

Chapter 1. Introduction

12

REQ. 14 business process composition; instead, the LRT designer should be assisted by

a correct mechanism for freely expressing the customized compensation

relationship between transactions tasks without violating the integrity of the

overall process. These should apply in the case of global failure of the LRT.

From the correctness and reliability of execution perspective, LRT modeling imposes

the following requirements (Chrysanthis & Ramamritham, 1990; Colombo & Pace,

2012):

REQ. 15 Providing the means of validating the correctness of execution semantics.

REQ. 16 The transactional relationships between interrelated tasks are best being

formalized in a way to make reasoning about their correctness a straight

forward task, i.e. using the same formalism for both, modeling and correctness.

This will also increase the extensibility of the model.

From the reactive management perspective, LRT modeling imposes the following

requirements (Papamarkos et al., 2006; Wieringa, 2003):

REQ. 17 Execution behavior of LRT components need to be observed as events, such

that when a component completes, fails or compensates, an event is fired.

REQ. 18 Execution semantics of the LRT need to be implemented as rules (policies) to

automatically execute business logic.

1.4 Modeling Objectives

13

1.4 Modeling Objectives

Our modeling objectives are driven by the modeling requirements discussed in the

previous section, and motivated towards the following aims:

1- Correct control flow of a long running transaction, both in its normal processing

path and its compensation processing path.

2- Flexibility in representation of execution semantics.

3- Flexibility in compensation composition.

4- Reliability of execution by correct handling of failures and compensations.

5- Automation of management mechanism as step towards a self-healing transaction

model.

6- Formal modeling of execution behavior that provides the means of reasoning

about correctness of the behavior.

1.5 Research Questions and Statement

The modeling requirements and objectives listed in the previous sections raise the

following research questions:

Q1- How can the structure of the business process be specified with complex and

arbitrary levels of nesting?

Q2- How can the control flow semantics of transactions with complex and nested

structure be formally captured? How can the same formalism be used to capture

failure and compensation semantics?

Chapter 1. Introduction

14

Q3- What failure mechanism best reflects the propagation of failures through nested

structures?

Q4- What formalism is ideal for the flexible incorporation of compensation logic into

business logic?

Q5- What management mechanism would be ideal for automating the control flow

process?

Q6- How can the control flow formalism be used for reasoning about correctness of

control flow, concurrency, failure handling and compensation semantics?

Thesis Statement

In this research, we focus on flexible control flow of web-based workflow modeling with

long running transaction support to deliver reliable execution behavior of business

processes. Reliability is guaranteed through flexible and autonomous failure handling

and comprehensive compensation handling mechanisms.

1.6 Contribution

Our contribution is a fourfold:

Contribution 1: Fine-grained specification model for arbitrary nested transactions.

We specify our LRT model as a hierarchical tree structure that provides a recursive

nature for propagating execution events across and along hierarchy levels. Essential to

1.6 Contribution

15

this fine-grained structure, we explicitly capture the semantics of execution paths and

specify them as autonomous components of the LRT. By providing this, we are able to

enrich the operational semantics of concurrency with flexibility and extensibility.

Contribution 2: Autonomous Failure Handling Mechanism

An essential propagation policy states that “Failure of a vital atomic node, fails its

superior”. Based on this policy, we build an autonomous failure handling mechanism that

propagates failures recursively through vital ancestors, if the failure event reaches the

root of the hierarchy, the transaction fails. Basic to the failure handling mechanism, a

downwards propagation of failures is applied to a failed concurrent scope, in order to

cancel all its activated components. The failure handling mechanism is integrated with a

partial compensation mechanism to apply partial recovery in the case of tolerable

failures.

Contribution 3: Compensation Composition Mechanism

We regard compensation composition as being as important as service composition.

Therefore, we provide business process designers with the underlying framework to

freely specify the order in which compensation of tasks are required to be executed. This

functionality is provided through the specification of compensation patterns that are

mapped onto the workflow schema. The designer is allowed to specify compensation

patterns on subsets of component services of an LRT. A compensation pattern then

decides the order by which the specified services are compensated. Any services that are

not involved in any compensation pattern are compensated concurrently. This will

Chapter 1. Introduction

16

increase the performance of the system in terms of time spent on the compensation

process. We support reliable compensation compositions by validating such

compositions, to avoid consistency violations. This implemented through the

comprehensive compensation mechanism of COMPMOD.

Contribution 4: Specification Extensibility

One important feature of COMPMOD is its highly flexible extensibility, in the sense that

the underpinning representation structure can be enriched with further concurrency,

execution and compensation semantics.

1.7 Model Overview

The work presented proposes a reliable control flow management mechanism for

sequencing and concurrency in web-based workflow transactions, such that tolerable

failures are handled. A tolerable failure is a failure of a task to complete successfully but

the failure is acceptable in the sense that it would not cause an interruption of the LRT’s

execution nor cause a global failure of the transaction. Handling tolerable failures would

typically involve partial compensation activities applied to subsets of tasks, but will not

stop the transaction from completing its normal execution. In the case of intolerable

failures, and when a consensus is reached about the failure of the LRT, a comprehensive

compensation is applied to all previously succeeded tasks. The order of compensations

can be customized on a subset or subsets of tasks. Tasks that are not part of a customized

order can be compensated concurrently. Customized compensations mainly reflect the

business and the compensation logic of the transaction.

1.7 Model Overview

17

Our approach for managing LRTs is based on a reactive system controller in event based

architecture. Policies define the rules by which the controller acts. In general, an

execution event is raised for a component to signal its readiness to perform an execution

(activation or compensation), or to signal that an execution of a component has finished

(completion or failure). The raised event is then assessed by management policies to

reach a consensus as to the current state of the component and the next state of its

correlated components.

An LRT in COMPMOD is represented as an arbitrary nested WF transaction. The WF

representation of the model imposes a hierarchical tree structure, where the root of the

hierarchy represents the main execution path. The respective levels of the tree represent

an alternating levels of nodes and execution paths, such that the superior of a path is its

enclosing scope node and the superior of a node is its enclosing execution path. This

results in atomic nodes being the leaf nodes of the hierarchy tree. Each component in the

hierarchy is directly correlated with its superior, inferior, and siblings in an encapsulated

manner, such that a component can be indirectly correlated with another component if

their superiors are correlated. As an example, nodes on concurrent paths are correlated,

since their superiors are siblings.

The encapsulated behavioral interrelationship between components is modeled by

dependencies, and automated by policies. Behavioral dependencies and management

policies both reflect the execution semantics of the model and complement each other.

Chapter 1. Introduction

18

The model allows for a separation between vital and non-vital components where a

failure of a vital component has an impact on the cancellation of its correlated

components, while failure of non-vital components is tolerated. Cancellations will invoke

partial compensations to return to a place where an alternative (if one exists) can be

attempted without lasting side effects, and the failure of the LRT will lead to

comprehensive compensation being applied to all composited nodes in the transaction.

1.8 Thesis Structure

The thesis is organized as follows:

 Chapter 2: discusses the literature background of the thesis and the related work

in the field.

 Chapter 3: discusses the two modeling paradigms that we adopt in our workflow

semantics; workflow patterns and transactional patterns and explains how we

extend these models.

 Chapter 4: describes the representation structure of the COMPMOD model, and

introduces the concepts of execution events, reactive management and

management policies. We will also state our model assumptions in this chapter.

 Chapter 5: describes the execution semantics of the model and its formalism, and

shows the management mechanism and the failure handling mechanism.

 Chapter 6: describes the logic and formalism of compensation events and policies,

and illustrates the partial and the comprehensive compensation mechanisms of

COMPMOD.

1.8 Thesis Structure

19

 Chapter 7: provides a verification of COMPMOD in terms of the correctness of

the proposed model and its extensibility feature.

 Chapter 8: concludes the thesis and provides details of future work.

 Bibliography

 Appendix A and B lists a table for all dependencies and management policies of

COMPMOD for easier referencing, through related discussions.

 Appendix C: provides an assessment of the COMPMOD model based on the

Workflow Patterns Initiative.

20

Chapter 2

Background

2.1 Introduction

There is a large body of work in the area of business process modeling: transactions,

workflows, and long running transactions. In this chapter, we provide a literature review

of some of the well-known modeling approaches and we focus on the parts relevant to the

respective compensation mechanism. We provide a critique on the limitations of

compensation mechanism in WS-BPEL and Compensation spheres. The critique is

exemplified by a case study from E-supply chain systems. Finally we show how our

COMPMOD model fills the gap in the current compensation mechanism limitations.

2.2 Data-Base Centric Transactions

21

2.2 Data-Base Centric Transactions

Database centric transactional models provide a strong theoretical foundation for

transactions. Failure recovery and concurrency control are inherent within the models.

The first of these models is the ACID flat transaction where a strict notion of “all-or-

nothing” is applied. Recovery is mainly based on the roll-back mechanism to restore the

state of the system to the state before the failure has happened. The ACID transactional

model is very restrictive, and is not appropriate when transactions are long lived and

complex and may span multiple local database systems. For this reason, a number of

extended and relaxed transactional models have been proposed, which relax some of the

ACID requirements.

Advanced transactional models have been proposed to introduce:

1- Multi-leveled and nested transactions such as in Nested Transactions (Moss,

1985).

2- The compensation concept in Saga transactional model (Garcia-Molina & Salem,

1987).

3- Nesting with compensation mechanism in Open Nested Transactions (Weikum

& Schek, 1992), Nested Sagas (Garcia-Molina et al., 1991), and Flexible

transactions (Elmagarmid, 1992; Zhang et al., 1994; Mehrotra et al., 1992), and

ConTracts (Reuter, 1989; Reuter, Schneider & Schwenkreis, 1997).

Chapter 2. Background

22

Nested models allow transactions to be nested within transactions to form a tree

transaction. The nesting structure is reflected on the commitment, abort, and

compensation of its constituent sub-transactions where different models provide

different protocols with varying flexibilities.

However, transactional models have the following limitations in business process

modeling:

 They are developed from the point of view of database management systems and

thus business related semantics such as activity automation are ignored.

 Coordination support for multi-tasking and collaborative activities across

organizations is limited, and thus they are not applicable to heterogeneous and

loosely coupled systems.

 Compensation mechanisms are strictly in reverse order of the sub-transactions’

commitment order and are hidden from transaction designers.

2.3 Transactional Workflows

Business Processes are usually defined by business analysts to capture the activities and

their respective orders to achieve some larger business goal. Workflows add a technical

layer between the services and the business process as seen by a business analyst

(Montangero, Reiff-Marganiec & Semini, 2011; Gorton et al., 2009).

2.3 Transactional Workflows

23

Workflows provide a key functionality in integrating heterogeneous and distributed

applications into a coherent business process and provide process automation.

Modeling of such workflows is usually conducted in some graphical notation such as

BPMN (White, 2004), UML activity diagrams, or YAWL (Van Der Aalst & Hofstede,

2005) which are graphical and textual and have formally defined semantics.

A structured work flow consists of symmetrical blocks of AND-split followed by AND-

join or OR-split followed by an OR-join. A workflow is well behaved if “it can never

lead to deadlock nor can it result in multiple active instances of the same activity”. The

work in (Kiepuszewski, Hofstede & Bussler, 2000) shows that every structured workflow

is well behaved.

Workflow patterns in (Van Der Aalst at al., 2000; Van Der Aalst at al., 2003; Russell,

Hofstede, & Mulyar, 2006) present standard defintions of workflow patterns found in

practical workflow strucures. This is a good standard for workflow developers, and we

provide a detailed description of the approach in Chapter 3.

Workflows lack a clear theoretical basis for correctness criteria and support for reliability

in presence of failures. Hence, transactional workflow is supported with transactional

semantics such as failure recovery mechanisms and reliable executions.

Failure recovery in transactional workflows can be supported in many ways:

Chapter 2. Background

24

1- Direct compensation semantics such as compensation spheres as discussed in

section 2.5.3.

2- Indirect compensation support such as YAWL where it is possible to model

compensation behavior by using YAWL constructs (Brogi & Popescu, 2006).

3- Dynamic and ad-hoc workflow adaptations in case of failure events such as

ADEPTflex in (Reichert & Dadam, 1997) (Reichert & Dadam, 1998) and (Müller,

Greiner, & Rahm, 2004).

Transactional patterns have been introduced first in (Bhiri, Perrin, & Godart, 2005) to

propose a transactional approach to ensure the failure atomicity of composite web service

workflows. Further work in (Bhiri, Godart, & Perrin, 2006) and (Bhiri, Perrin, & Godart,

2006) used the concept of trasnactional patterns to ensure reliable composite services

accrording to designers’ specific needs. Control and transactional dependencies are

defined for component web services and are mapped onto workflow patterns.

Dependencies expressed in first order logic are employed to validate the transactional

behaviour of web service compositions. We have drawn inspiration from this work, and

we provide a detailed descripiton of the approach in Chapter 3.

2.4 LRT Modeling Approaches in Web Service Settings

Web services are coordinated through coordination protocols, and orchestrated through

orchestration languages at a high level of abstraction and where failures are dealt with as

exceptions. Coordination protocols describe coordination through transaction messages.

2.4 Modeling Approaches in web Service Settings

25

Such as: Tentative Hold Protocol (Roberts & Srinivasan, 2001), Business Transaction

Protocol (Ceponkus et al., 2002), and WS-Transaction (Cabrera et al., 2002).

Web services are composited through orchestration and flow composition languages.

The body of work in this area has been focused in two directions: Formal modeling and

orchestration languages.

2.4.1 Formal Modeling

The semantics of flow or interaction based compositions of web services are achieved

through proposing extensions of well-known calculi or process algebra. In brief, control

flow of compensations is achieved through primitives to install and activate required

compensation activities within compensable processes (processes that are paired with

compensation activities). The mechanism for installing and activating compensations is

similar to exception handling primitives (throw and try-catch) of high level languages

such as C++ or Java. Common to all models, compensation handlers are called from fault

handlers. What differentiates these models is the way compensations are composed and

executed. In (Bruni et al., 2005) , these were classified as:

(1) Compensable flow composition where the way compositions are orchestrated is

similar to WS-BPEL and where process algebras are designed from scratch to

describe the flow of control among services, such as (Bruni, Melgratti, & Montanari,

2005; Butler & Ferreira, 2004; Butler, Hoare, & Ferreira, 2005).

(2) Interaction based compensations as extensions of well-known calculi where

modeling dynamic compensations is addressed, such as π-calculus (Bocchi, 2004)

Chapter 2. Background

26

(3) based on BTP, webπ (Laneve & Zavattaro, 2005), and webπ infinity (Mazzara &

Lanese, 2006).

In these models, semantic definitions are somewhat complicated. Hence, they are not

practical to use to model real time business scenarios.

2.4.2 Orchestration Languages

Orchestration languages build business workflows by developing graphical or XML-

based languages such as XLANG (Thatte, 2001) and WS-BPEL (Andrews et al., 2003)

(OASIS, 2007). In this section we discuss the general structure and mechanism in WS-

BPEL and in section 2.5.2 we discuss by example some limitations of its compensation

mechanism.

WS-BPEL is an industrial standard and language for process modeling based on XML

and for connecting process activities with web services. WS-BPEL has rich functionality

and provides fault and compensation handling capabilities for business process designers.

Scopes in WS-BPEL are used to group activities in the business process based on

functionality or shared variables and events. Scopes can be nested, that is scopes can be

defined within scopes. Fault, compensation, and termination handlers are process

fragments that run if a fault is raised or in case of compensation, to reverse the effect of a

set of successfully completed activities. Each scope is attached with its own fault and

compensation handlers as well as a termination handler (to terminate the processing of

the scope if its parent scope is terminating or exiting).

2.4 LRT Modeling Approaches in Web Service Settings

27

These handlers can either be specified explicitly or can follow a default specification as

provided by WS-BPEL standard. The control flow of activities is defined by two

schemes: (1) structured activities controlled by “sequence” or “flow” to impose control

logic on activities nested within them, and (2) explicit control links between source and

target activities such that a target activity can only start executing after a source activity

has completed. A compensation handler can only be invoked by a fault handler which is

triggered by a fault in the executing process. Furthermore, compensation handlers can

only be attached to scopes and not to activities

One major drawback of orchestration languages is that they do not support formal

definitions for their operational semantics. As a consequence, there has been research

directed towards formalizing their operational semantics such as BPEL (Qiu et al., 2005)

based on WS-BPEL and c-join (based on XLANG) (Bruni, Melgratti, & Montanari,

2004).

2.5 Limitations of Selected Approaches

After having discussed different modeling approaches of business processes in the

previous sections, we dedicate this section to highlight these limitations by examining a

running example. We choose an example from an e-supply chain management system

and we focus on the compensation mechanism of two widely used modeling approaches:

(1) the modeling language WS-BPEL, and (2) the conceptual modeling approach of

compensation spheres.

Chapter 2. Background

28

2.5.1 E-supply chain case study

Internet based supply-chain systems are achieved through integration of information

systems of all supply chain partners (customers, suppliers, and manufacturers). E-Supply

Chain may be sourced from several countries, assembled in other countries, and delivered

to customers all around the world. In service oriented environment, the integration

between business parties is represented by business process activities (e.g. a workflow)

which are achieved through web services. A typical customer order represented by a long

running business transaction, triggers several B2B web services provided by a network of

independent companies to provide a streamlined material flow between all partners.

In this thesis, we use examples from E-Supply Chain to illustrate and justify our proposed

model.

The example in (figure 2.1) illustrates an inter-enterprise business process occurring in

the supply chain: how the supplier does business with one of its trusted manufacturing

partners.

Figure 2.1 Supplier-Manufacturer outsourcing business process OP

2.5 Limitations of Selected Approaches

29

The sub processes in OP has the following functionalities:

 SALES: performs activities such as receive order from manufacturer, Audit

order, and send order acceptance to manufacturer.

 CHARGE: performs payment activities for the outsourced goods.

 OUTSOURCE_ANALYSIS: is a routine activity that is performed with each

order transaction to conduct metrics that are used later in determining company’s

strategies, marketing goals...etc.

 DELIVERY: delivers the goods to the manufacturer.

 CHECK_GOODS: the manufacturer checks the goods. If goods are acceptable

then the outsourcing process is completed, otherwise an exception will occur.

The OP process has the following logic:

Once the sales activity is completed, three activities are run in parallel; CHARGE,

OUTSOURCE_ANALYSIS, AND DELIVERY. This special outsourcing scenario is

conducted with trusted manufacturers. That is why the delivery of goods is performed in

parallel with payment. However, the process logic requests that if the goods were to be

returned for any reason such as “not meeting the required specifications”, the goods must

be returned to the supplier warehouses before the payment is refunded to the

manufacturer.

Chapter 2. Background

30

2.5.2 Compensation Mechanism in WS-BPEL

Due to lack of compensation semantic formalism, the compensation mechanism in WS-

BPEL may show anomalies in certain execution scenarios such as neglecting

compensation control links that cross scope boundaries as discussed in (Khalaf, Roller, &

Leymann, 2009). In other words, WS-BPEL does not provide guarantee on compensation

order.

In WS-BPEL, the compensation order of activities within scopes is strictly in reverse

order of their completion and this order is carried out by default compensation handlers.

Although explicit control links are allowed between activities/scopes and they are obliged

during the normal execution flow, the reverse order of control links during default

compensation processing is not straightforward and hence could be violated (König,

2006) and (Thatte & Roller, 2003). In addition, modeling compensation logic in WS-

BPEL exhibits high complexity behavior in the presence of scope nesting together with

control links that cross scope boundaries.

We will show next in a step by step fashion the compensation mechanism in WS-BPEL

by discussing a running example and we show how inconsistencies could occur in the

compensation behavior. In (figure 2.2), we show a high-level graphical illustration for the

business process of (figure 2.1). The visual cues in (figure 2.2) are borrowed from

(Khalaf et al., 2009).

2.5 Limitations of Selected Approaches

31

Figure 2.2 WS-BPEL process for supplier-manufacturer outsourcing example

Scope OP represents the outer most scope that groups scope DELIVERY, SCO, and

activity CHECK-GOODS. We assume that scope SCO groups SALES, CHARGE, and

OUTSOURCE-ANALYSIS activities based on some shared order, customer, and

payment variables. The solid arrows represent the control logic of business process

activities and the dashed bold arrow represents an explicit control link to represent the

compensation logic of the process as explained in section 2.5.1. Hence stating that if the

scope OP is compensated, then the goods must be returned first (compensator of

DELIVERY) before payment is refunded to the manufacturer (compensator of

CHARGE).

In WS-BPEL, when a scope is activated and running then its fault and termination

handlers are installed and its compensation handler is not installed. When a scope is

completed successfully then its fault and termination handlers are de-installed and its

compensation handler is installed.

Chapter 2. Background

32

The illustration in (figure 2.2) assumes an execution instance of OP and hence the

execution states of OP components are as follows: OP, SCO and

OUTSOURCE_ANALYSIS are activated where SALES, CHARGE, and DELIVERY

have been completed. If we assume that CHECK_GOODS has failed, the compensation

mechanism of WS-BPEL will perform the following:

1- The failure of CHECK_GOODS will raise a fault exception to fault handler of OP

and the termination handler of OP will initiate the termination of immediately

nested activated components starting with non-scope components then scope

components. In this scenario there are no activated non-scope components and

only SCO is activated.

2- The fault handler of SCO is deactivated and the termination handler of SCO

terminates the activated OUTSOURCE-ANALYSIS.

3- The termination handler of SCO then invokes the compensation handler of SCO

in default compensation order. Since SALES and CHARGE are not linked

through explicit control dependency therefore their compensation is performed in

any order.

4- When the compensation handlers of both SALES and CHARGE have finished,

the control goes to the default fault handler of OP.

5- The fault handler of OP then invokes the compensation handler of OP which

invokes the compensation handler of DELIVERY and the scope is compensated.

2.5 Limitations of Selected Approaches

33

The compensation mechanism of WS-BPEL on this specific scenario exhibits violation of

the explicit control link between CHARGE and DELIVERY and that the payment has

been refunded to the manufacturer before the actual goods have been returned to supplier.

Hence, the default handlers in WS-BPEL in some execution settings may over rule

explicit control links.

There has been research directed to overcome such non-deterministic compensation

behavior in WS-BPEL. For example, in (Khalaf et al., 2009) the authors proposed a

deterministic model for handling compensations by altering the behavior of handlers and

relaxing restrictions on control links. In (Coleman, 2005), the authors request a richer

capability of compensation handlers. However, the default compensation of activities

within scopes remains the same: reverse order of their completion.

One could argue that the business process could be modeled in a different way but this

would necessitate that the business designer should comprehend all possible execution

states of the process which is not a feasible solution. Furthermore, as the complexity of

the business process increases, modeling compensation behavior becomes cumbersome.

In COMPMOD, the compensation behavior is clearly determined at design time and

during compensation mode, the explicit compensation links over rule any other control

dependencies. In table in 2.1, we summarize some of the differences between the

COMPMOD and WS-BPEL.

Chapter 2. Background

34

 WS-BPEL 2.0 COMPMOD

Model Executable modeling language Conceptual model

Control flow Structured nested activities +

explicit control links

Control dependencies derived

from workflow structure +

explicit compensation

dependencies

Scopes Explicitly assigned to group

activities based on shared variables

or functionality.

Implicitly formed by the

model to group activities

nested within workflow

structures.

Compensation

order

Determined and calculated during

runtime depending on execution

state of scopes

Determined and calculated at

design time

Compensation links could be over

ruled by default handlers behavior

Compensation dependencies

have priority over control flow

dependencies

Reverse order Based on designer tailored

compensation dependencies

Compensation

design

flexibility

“Default handler behavior causes

high complexity in the default

compensation order making it

difficult for a designer to

anticipate the resulting behaviors

when making process design

decisions” (Khalaf et al., 2009)

Compensation dependencies

can be assigned in any order

independent of control flow of

activities

Compensation

behavior

Possible un-deterministic

behaviors

Deterministic

Table 2.1 Compensation behavior WS-BPEL vs. COMPMOD

2.5.3 Compensation Mechanism in Compensation Spheres

Atomic and compensation spheres in (Leymann, 1995) and (Leymann & Roller, 2000)

propose a conceptual model for workflow management systems to allow for transactional

2.5 Limitations of Selected Approaches

35

properties such as “all-or-nothing” and compensation mechanism to be applied to

workflow business processes. We discuss in this section the compensation spheres. A

compensation sphere is an arbitrary collection of activities that are tightly related and

share a common fate. Each activity in the compensation sphere is coupled with a

compensating activity. If an activity in the compensation sphere has failed and aborted,

then all completed activities within the sphere are compensated in reverse order. We

discuss by example (figure 2.3) the compensation sphere mechanism. The workflow of a

business process P is detected as a directed graph (figure 2.3 (a)) where a designer can

arbitrarily select a compensation sphere S. Based on this selection, the mechanism

induces a compensating graph or map S* (figure 2.3 (c)) by deriving P
-1

 from P where P
-1

represents the reversed edges of P. When a compensation sphere commences its

compensation, the execution starts by compensating activity L and cascades

compensation of activities following the control edges in S*.

One advantage of this approach is offering flexibility by involving some degree of

arbitrary assignments of compensation orders within a sphere- as opposed to strictly

reverse order. For example, indirectly connected activities in P such as B and I but where

I is reachable from B in P can be grouped in S. Furthermore, non-connected activities

such as B and G in P but where B is reachable from G in P
-1

 can also be grouped in S.

Chapter 2. Background

36

Figure 2.3 Compensation Spheres borrowed from (Leymann & Roller, 2000) p. 271

However, compensation spheres have two restrictions:

R1. Any two activities that are non-connected in both P and P
-1

 cannot possibly be

grouped alone in a single compensation sphere such as (A and B) or (E and I).

R2. Compensation spheres approach does not provide the process designer the ability to

assign extra compensation control flow edges such as to explicitly connect the non-

connected activities in the process graph.

We apply the compensating graph algorithm in (figure 2.3) on our outsourcing example

as depicted in (figure 2.4). Note that CHARGE and DELIVERY are not connected in

both P and P
-1

(restriction R1) and hence grouping them in a sphere leads to un-connected

2.5 Limitations of Selected Approaches

37

graph S* (figure 2.4 (c)). And because of restriction R2, it is not possible to apply the

required compensation dependency between CHARGE and DELIVERY.

One could argue that the designer can change the design of process such as to be able to

force the required compensation orders if they cannot be systematically applied.

However, in COMPMOD model we strongly avoid restricting the making of the design

decisions of the business process because of compensation mechanism limitations.

Figure 2.4 applying compensation spheres on outsourcing busing process

2.6 Conclusion

One of the aims of our COMPMOD approach is to simplify the design of business

processes. We do so by performing compensations when explicitly requested by the

designer and in the order required by the business process logic regardless of how the

LRT is structured or how activities are scoped. Hence, designers can easily view and

Chapter 2. Background

38

reason about the customized compensation order to decide how best to design their

processes. Scopes in COMPMOD are implicitly defined over nested structures. This

structure is totally ignored during compensation and the priority is given to the explicitly

defined dependencies

We have shown that purely transactional models force a strict compensation mechanism

and that the business designers are not provided with the capability to alter compensation

orders and that reverse compensation order is automatically executed.

While workflow models show a high degree of process automation, they fall short in

showing transactional properties including compensations.

The complexity of compensation in WS-BPEL is a problem. It is hard for process

designers to comprehend all possible behaviors a process will have, due to

compensations, as they always must keep in mind all current states in all different scopes

and their control link dependencies.

We have also shown by example how there are cases in compensation spheres where un-

connected activities in the process cannot be grouped in a sphere which imposes

restrictions on process designers.

We strongly claim the importance of freely assigning compensation patterns over process

activities without putting into consideration the restriction imposed by the process

structure.

39

Chapter 3

Fundamentals

3.1 Introduction

Our modeling approach adopts and extends two main approaches: Workflow Patterns and

Transactional Patterns. In this chapter, we discuss each of the adopted approaches, and

provide an informal description of the operational semantics of our extensions.

Definitions are illustrated with examples from the E-supply Chain management systems.

We also discuss some reliability and integrity issues related to COMPMOD patterns.

Chapter 3. Fundamentals

40

3.2 Workflow patterns

A Long Running Transaction in COMPOD model is represented as a workflow schema

(LRT-WF). A workflow systems’ functionality depends on task sequencing, split

parallelism, synchronization and iteration constructs as means of automating the business

process. Different workflow management systems provide different semantics for the

same construct. We adopt the semantics from “Workflow Patterns” (Russell et al., 2006)

as a paradigm for the informal descriptions of our model constructs. The workflow

patterns approach proposes an imperative definition of work flow patterns and provides

the patterns as a standard to be employed by business process designers and workflow

system developers.

Workflow patterns have been developed as part of an initiative commenced in 2000 by

(Van Der Aalst et al., 2000). They classify the core architectural constructs inherent in

workflows in a language and technology independent way, thus allowing for the

definition of the fundamental requirements of business process modeling. Workflow

patterns consider workflow specifications from a control-flow perspective and

characterize a range of control flow patterns that might be encountered when modeling a

business workflow. Following the initial work, twenty patterns were introduced in (Van

Der Aalst et al., 2003) and a total of forty three control patterns were revised/proposed in

(Russell et al., 2006).

3.2 Workflow Patterns

41

The patterns range from simple constructs that are supported by most of the workflow

management systems to complex routing primitives that are not yet supported by today’s

commercial workflow management systems or business process modeling languages. The

work supports each pattern with an informal description and context assumptions, formal

descriptions using Colored Petri Nets (Jensen, 1997) implementation related issues, and

provides evaluation criteria for workflow developers to assess their offerings of full,

partial, or no support of a given pattern.

Workflow Patterns are classified in (Russell et al., 2006) as (a) five basic control-flow

patterns, (b) four advanced branching and synchronization patterns, (c) two structural

patterns, (d) four multiple instance patterns, (e) three state-based patterns, (f) two

cancellation patterns., and (f) twenty three new control flow patterns which add to the

above classifications in addition to loops and multiple instances patterns. The

COMPMOD model assumes only a single instance of activities for a given process

instance and therefore multiple instances, loops and interleaved patterns are not yet

supported by the model. However, their applicability is a practical extension of the model

and is discussed as a future work in this research in (Chapter 8).

Workflows embrace branches of execution that are split, synchronized, merged, or

discriminated at different points in the workflow process. A split pattern splits a branch

of execution into two or more branches and the type of split construct determines the

mode of branch routing. There are three basic split patterns, namely; Parallel Spilt (AND-

split), Multi-Choice (OR-split), and Exclusive Choice (XOR-split). Parallel Spilt and

Chapter 3. Fundamentals

42

Multi-Choice create concurrent routing of execution branches, while Exclusive Choice

creates exclusive routing, where only one of the split branches is enabled at runtime

depending on distinct choice conditions associated with each branch.

Two or more branches of executions can be synchronized, merged without

synchronization, discriminated (only 1 out of M paths is chosen), or partially joined (N-

out-of-M) by using a join construct that reflects the required semantics of the join.

The LRT-WF schema of COMPMOD is modeled as a structured workflow. Structured in

this context can be viewed as a notion of well-formedness (Kiepuszewski, Hofstede, &

Bussler, 2000), where concurrent and exclusive branches are encapsulated within scope

patterns. Scope patterns, our contribution to the workflow patterns initiative, start with a

split pattern and end with a join pattern. The type of split and join patterns reflect the

required operational semantics of the scope.

Scope patterns in COMPMOD can encapsulate further scopes, thus allowing for the

modeling of multi nested transactions. The number of splits and joins within a nested

scope are balanced, and not interleaved.

The structured nature and the operational semantics of our scope patterns are emphasized

at both; the split type and the join type of the scope pattern. Due to the diversity of join

constructs, we apply further classification to the patterns proposed in (Russell et al.,

3.2 Workflow Patterns

43

2006), based on the operational semantics of join patterns and utilize this classification in

many different ways throughout the discussions in this thesis, including:

1- Informal and formal description of proposed scope patterns

2- Evaluation of partially supported join patterns

3- Evaluation of potentially applicable new scope patterns given the underpinning

structure semantics of the model.

4- Discussions and Conclusions.

We classify join patterns1 as follows:

1- Synchronization (AND-join): the convergence of two or more branches into a

subsequent branch such that the thread of control is passed to the subsequent

branch when all input branches have been enabled. The context of the pattern

assumes that (a) the incoming branches are parallel and result from an earlier

AND-split, (b) each incoming branch executes only once, and (c) the construct is

enabled once all incoming threads are completed. The (Generalized AND-join) is

a variation of AND-join where multiple instances of incoming branches are

allowed.

2- Merge: the convergence of two or more branches into a single subsequent branch.

Each enablement of an incoming branch results in the thread of control being

passed to the subsequent branch. There are two variations of this construct, the

Simple-Merge (XOR-join), which allows only one incoming thread to be active at

any time, while in the (Multiple-Merge) construct, it is possible for more than one

1 Descriptions in italics are borrowed from RUSSELL, N., TER HOFSTEDE, A. H. M. &

MULYAR, N. 2006. Workflow controlflow patterns: A revised view.

Chapter 3. Fundamentals

44

3- incoming branch to be active simultaneously. Note that incoming branches are

assumed to be distinct, and do not necessarily diverge from an earlier split pattern,

and need not to be synchronized.

4- Partial join (N-out-of-M): the convergence of M branches into a single

subsequent branch following a corresponding divergence earlier in the process.

The thread of control is passed to the subsequent branch when N of the incoming

branches have been enabled. Variations of this join pattern are: (a) Structured

Partial Join, where subsequent ennoblements of incoming branches do not result

in the thread of control being passed on. The join construct resets when all active

incoming branches have been enabled. (b) Blocking Partial Join where the join

construct resets when all active incoming branches have been enabled once for

the same process instance and subsequent enablement of incoming branches are

blocked until the join has reset – ideal for scopes within loops, and (c) Cancelling

Partial Join where triggering the join also cancels the execution of all of the other

incoming branches and resets the construct.

5- Discriminator (1-out-of-M): the convergence of two or more branches into a

single subsequent branch following a corresponding divergence (in case of the

Structured Discriminator), or following one or more corresponding divergences

(in case of the Unstructured Discriminator) earlier in the process model. The

thread of control is passed to the subsequent branch when the first incoming

branch has been enabled. Variations of this join pattern are: (a) Structured

Discriminator where subsequent enablement of incoming branches do not result

in the thread of control being passed on and the construct is reset when all

3.2 Workflow Patterns

45

6- incoming branches have been enabled, (b) Blocking Discriminator where the

discriminator construct resets when all active incoming branches have been

enabled once for the same process instance. Subsequent ennoblements for of

incoming branches are blocked until the discriminator has reset – ideal for

constructs within loops, and (c) Cancelling Discriminator where triggering the

discriminator also cancels the execution of all the other incoming branches and

resets the construct.

7- Synchronization Merge: the convergence of two or more branches into a single

subsequent branch. The thread of control is passed to the subsequent branch

when each active incoming branch has been enabled. Variations of this pattern

are (a) Structured Synchronization Merge where the converged branches are

diverged earlier in the process at a uniquely identifiable point -ideal for

synchronizing branches resulting from an OR-Split, (b) Acyclic Synchronization

Merge where the converged branches are diverged earlier in the process and

determination of how many branches require synchronization is made on the

basis of information locally available to the merge construct-ideal for non-

structured workflows, and (c) General Synchronization merge where the

converged branches are diverged earlier in the process and the thread of control

is passed to the subsequent branch when each active incoming branch has been

enabled or it is not possible that the branch will be enabled at any future time-

ideal for non-structured and highly concurrent workflows that include looping

structures.

Chapter 3. Fundamentals

46

8- Other join patterns: there are a few more join constructs that deal with multiple

instances of activities within a given process instance, and with multiple

execution thread instances in a single branch. These patterns are not discussed in

this work.

In COMPMOD we provide:

1- New operational semantics of exclusive split and join patterns: XOR
*
-split and

XOR
*
-join that allows for alternative exclusive choices such that only one

alternative can be tried at any time.

2- Explicit support for sequence, AND-split, OR-split, and XOR
*
-split.

3- Implicit support for AND-join (synchronization), OR-Join (Structured

Synchronization Merge), and XOR
*
-join.

4- Explicit support for the operational and transactional semantics of three new

scope patterns: AND-scope, OR-scope, and XOR-scope.

Further patterns (other than sequence, split, and join patterns) are also either fully

supported by the model, as in “implicit termination” or partially supported, as in “cancel

region”. In Appendix C, we provide an evaluation for COMPMOD in terms of the extent

of support of each pattern.

3.3 Informal description of COMPMOD patterns

In the following subsections we discuss the informal descriptions of the main workflow

patterns in COMPMOD that explicitly outlines the three basic execution routing modes:

sequence, concurrent, and exclusive execution of branches.

3.3 Informal Description of COMPMOD Patterns

47

3.3.1 Sequence Pattern

The sequence pattern is the main building block of the WF process. It allows connecting

tasks2 in sequential order. The pattern is informally described as:

Def. 3.1 (Sequence Pattern) (Russell et al., 2006): An activity in a workflow

process is enabled after the completion of a preceding activity in the same process.

For example, in a supplier’s sales department, after the order has been received from a

manufacturer, an auditor activity will check the order to decide whether to accept it or not

(Figure 3.1).

Figure 3.1 Sequence pattern in supplier sales process

In our model, a task or a set of interrelated tasks (scope pattern) can be appended to

another task or scope in sequential order on the same execution branch.

3.3.2 Scope Patterns

Informally, a scope pattern is defined as follows:

Def. 3.2 (scope pattern): A scope-pattern is a composite pattern that couples a

split pattern with a join pattern to ensure a symmetrical structure of the scope. The

2 Throughout the discussions, tasks, activities, web services, and atomic nodes (Chapter 4

onward) are all used to refer to an atomic unit of work.

Chapter 3. Fundamentals

48

scope starts at the split point and ends at the join point. The scope is enabled when

the incoming branch to the scope is enabled. The split construct of the scope

diverges the incoming branch into two or more branches which are converged

later by the joint construct. Enabling diverged branches and the join construct

depends merely on the semantics of the split and join patterns respectively.

In Figure 3.2, we illustrate a generic representation of a scope pattern that scopes three

activities A1, A2, and A3.

Figure 3.2 A generic scope pattern representation

A diverged branch within a scope may entail one or more tasks that are connected

through sequence patterns. A task can be an individual task or a scope pattern, thus

allowing the construction of nested scope patterns that contains a balanced number of

splits and joins and thus is symmetrical by construction.

3.3 Informal Description of COMPMOD Patterns

49

3.3.2.1 Concurrent Scopes

A concurrent scope creates two or more parallel branches. Once the scope is enabled, all

concurrent branches are enabled simultaneously. Concurrent branches are synchronized

via a synchronizer join construct. The synchronizer is enabled when all parallel branches

are completed. We introduce two concurrent scope patterns, AND-scope and OR-scope.

An AND-scope starts with an AND-split (parallel split) pattern and is coupled with a

synchronizer (AND-Join).

We provide an informal description of the AND and OR scope patterns based on both,

the semantics of the individual patterns involved as described in (Russell et al., 2006) and

the general definition of scope patterns (Def. 3.2).

Def. 3.3 (AND-scope): the divergence of a branch at the split point of the scope

into two or more parallel branches that are executed concurrently when the scope

is enabled. Concurrent branches are synchronized at the join end of the scope and

execution control can be passed to the task immediately following the

synchronizer once all of the concurrent branches have completed their executions.

As an example, in Supplier-Manufacturer outsourcing business process OP (Figure 2.1),

after the SALES activity is completed, three activities (CHARGE,

OUTSOURCE_ANALYSIS, and DELIVERY) are instantiated in parallel. This control

flow represents an AND-join pattern. In COMPMOD, this structure is represented by an

AND-scope pattern as illustrated in Figure 3.3. Note that in the original process logic of

Chapter 3. Fundamentals

50

OP, the DELIVERY activity is followed by the CHECK_GOODS activity representing a

sequence pattern between them. Therefore, CHECK-GOODS is enclosed within the

AND-scope pattern.

Figure 3.3 AND-scope pattern in OP process

A variant of the concurrent scope is the conditional concurrent scope where only a subset

of the parallel branches are enabled based on logical conditions paired with each parallel

branch. The synchronizer is enabled when all enabled parallel branches are completed.

An OR-scope starts with an OR-split (Multi-Choice) pattern, and is coupled with a

Structured Synchronizer Merge.

3.3 Informal Description of COMPMOD Patterns

51

Def. 3.4 (OR-scope): the divergence of a branch at the split point of the scope into

two or more parallel branches where only a subset of the branches are executed

concurrently when the scope is enabled. The selection is based on the outcome of

logical expressions associated with each parallel branch. The selected concurrent

branches are synchronized at the join end of the scope and execution control can

be passed to the task immediately following the synchronizer once all of the

selected concurrent branches have completed their executions.

As an example, in E-Supply Chain systems, after an order has been received by a

company and the payment has been received from the customer, an inventory check is

performed to investigate the availability of goods in the company’s warehouses. If the

ordered goods are available, the goods are delivered to the customer. If the ordered goods

are not available, a manufacture plan process is instantiated to provide the customer with

the ordered goods from different supplier(s)/manufacturer(s). In COMPMOD, this

process logic is represented by the OR-scope pattern illustrated in Figure 3.4.

Figure 3.4 OR-scope pattern in Supply Chain process

Chapter 3. Fundamentals

52

3.3.2.1 Exclusive Scopes

An exclusive scope creates two or more exclusive branches. Exclusive branches alternate

with each other, but only one exclusive branch is enabled, based on some distinct criteria.

If an enabled branch fails to complete, an alternative branch is enabled. The scope starts

with an exclusive split pattern, and ends with an exclusive join pattern. The join pattern is

enabled when exactly one of the incoming exclusive branches has completed. In (Russell

et al., 2006), diverged branches in XOR-split pattern are enabled, based on distinct

logical values associated with each branch and does not provide alternative enablement of

branches. The XOR-join (Simple Merge) allows only one incoming branch to be enabled

at a time, but allows all incoming branches to be enabled. Therefore we extend Workflow

Patterns with two individual patterns as a variation of both the XOR-split and XOR-join,

namely the XOR
*
-split3 and XOR

*
-join.

We extend the semantic of the XOR-split as follows:

Def. 3.5 (XOR
*
-split): The divergence of a branch into two or more branches.

When the incoming branch is enabled, the thread of control is immediately passed

to precisely one of the outgoing branches based on the highest priority criteria,

where the first branch has the highest priority. If a branch fails to complete, an

alternative branch is enabled (if any). The alternative branch is the one with the

next highest priority.

3 Similar to preference relation in ZHANG, A., NODINE, M., BHARGAVA, B. &

BUKHRES, O. Ensuring relaxed atomicity for flexible transactions in multidatabase

systems. 1994. ACM, 67-78.

3.3 Informal Description of COMPMOD Patterns

53

Def. 3.6 (XOR
*
-join): the convergence of two or more branches that had diverged

from an XOR
*
-split at some point earlier in the WF process. The construct is

enabled when exactly one of the incoming branches has been completed.

Accordingly, we provide an informal description of the XOR-scope pattern based on

definitions (Def. 3.2, 3.5, and 3.6).

Def. 3.7 (XOR-scope): the divergence of a branch at an XOR
*
-split point of the

scope into two or more exclusive branches that are converged later at an XOR*-join

point. When the scope is enabled, execution control is immediately passed to

precisely one of the outgoing branches, based on highest priority criteria where the

first branch has the highest priority. If an exclusive branch fails to complete, an

alternative branch (if any) is enabled. The XOR*-join construct is enabled when

exactly one branch is completed.

The extension of XOR-scope is motivated by two aspects:

(a) Business process aspect: often a number of alternative tasks are proposed in the

workflow, but there is a clear preference for one over the other. For example, an

e-booking scenario could be searching for an outbound journey to a destination

where the priority is given to flights. If no flights are available for the required

Chapter 3. Fundamentals

54

(b) date then trains may be tried. The last priority could be travelling by bus if no

trains are available.

(c) Long-Running transactional aspect: when a sequence of tasks is required to be

executed by a business process that executes over a long period of time and the

risk of failing this sequence is not affordable, then the sequence of tasks could be

alternated by an alternative sequence of tasks from the business point of view. In

case of the failure of the first priority scenario, an alternative scenario is tried. E.g.

in an e-supply-chain business scenario, a contract with one of two or more

suppliers (prioritized according to their quotes, location, or quality) should be

guaranteed for a specific product where the contract process might include many

interrelated tasks. If a contract process fails to complete for a specific supplier, an

alternative supplier can be tried.

To illustrate the XOR-pattern by example, we consider a delivery process in a typical

supply chain system. Usually, different delivery methods are provided depending on the

company’s delivery policies or customer location. Let us assume that in a specific

delivery scenario, a company offers two methods of delivery: deliver by car or deliver by

plane where priority is given to car delivery. If car delivery is not possible, then delivery

by plane is attempted. In COMPMOD, this process logic is represented by an XOR-scope

pattern as illustrated in figure 3.5.

3.3 Informal Description of COMPMOD Patterns

55

Figure 3.5 Delivery XOR-scope pattern

3.4 Reliability and Integrity Issues

Informal descriptions of workflow patterns clarify the operational semantics of the

constructs in an abstract way and from the control point of view of their intended

functionality. The descriptions designate when a construct is enabled with respect to the

enablement of its incoming or outgoing branches. Our workflow model is a transactional

workflow model where the control flow mechanism is influenced by transactional

properties such as completions, failures, or cancellations of workflow activities or

activity scopes. The transactional behavior of a certain activity has an impact on other

interrelated activities. For example, in Def3.1, an activity is executed when the preceding

activity has completed. The definition does not state what happens when the preceding

activity fails.

Given the nested structure nature of the workflow schema, a failure or cancellation of an

activity has an impact on the transactional behavior of other interrelated activities or

Chapter 3. Fundamentals

56

encapsulated scopes. An additional challenge is that the transactional nature of our

workflow model implies that the behavior of the workflow must be reliable and the

overall system should always be guaranteed to be in a consistent state.

A major concern in reliability assurance is on the failure handling mechanism supported

by the management model of the workflow. Analogous to failure handling support, and

equivalent to it in importance is the compensation handling mechanism. The informal

semantics of the exclusive scope Def3.7 states that when an exclusive branch is enabled

but fails to complete, then an alternative branch is enabled. However, it does not state

what happens to the partially completed activities in the failed branch. Transactional

integrity assurance requires the partially completed activities to be compensated before

the alternative branch is executed, due to the potential assumption that alternative

branches attain the same overall task from the business point of view.

Deadlocks may arise from the ambiguous behavior of join constructs. For example, a

synchronizer with m incoming branches assumes m enablement of branches for the

construct to be fired. If one or more of the branches fails, the construct goes into a

deadlock state. Hence, the synchronizer should be supported with transactional semantics

to constantly ensure the consistent behavior of the construct even in case of failures.

To address the issues mentioned, we augment the operational semantics of workflow

patterns with transactional semantics to formally define the implemented patterns in

COMPMOD. Thus, each workflow activity, branch, and scope is defined with a set of

3.4 Reliability and Integrity Issues

57

transactional dependencies: activation, completion, failure, cancellation (force-fail), and

compensation (when necessary). Dependencies are employed to model a reliable

interrelated behavior of workflow components which consequently guarantees a reliable

overall behavior of the model. The formal transactional semantics of the model are

defined through (a) Transactional Dependencies, and (b) Management and Compensation

policies. Formal descriptions are detailed in chapters 5 and 6.

3.5 Transactional Patterns

In our model, workflow tasks are web services. Orchestration deals with how different

services are composed into a coherent whole (LRT). It specifies the order in which

services are invoked, and the conditions under which a certain service may or may not be

invoked (Alonso, 2004). Our orchestration mechanism is inspired by the “Transactional

Patterns” approach (Bhiri et al., 2006a) (Bhiri et al., 2006b). Transactional patterns are

aimed at specifying flexible and reliable composite web services. They are a convergence

concept between workflow patterns and advanced transactional models (Elmagarid,

1991), and thus they combine the flexibility of work flow control patterns with the

reliability of transactional models to ensure the transactional consistency of service

compositions.

Web services emphasize transactional properties for their characterization and correct

usage. In (Bhiri et al., 2006a), these properties are assumed to be retriable, compensable,

and pivot. A service s is said to be retriable if it is sure to complete after a finite number

of activations, while s is compensable if it offers compensational policies to semantically

Chapter 3. Fundamentals

58

undo its effects, and s is said to be pivot if once it successfully completes then its effects

cannot be undone.

Each service has a set of operations, depending on the transactional property of the

service. A pivot service has a minimal set of abort(), activate(), cancel(), fail(), and

complete() to allow its abortion, activation, cancellation, failure, and successful

completion. A compensable service has in addition a compensate() operation to allow for

its compensation. A retriable service has a retry() operation to allow for its activation

after failure.

The transactional patterns define orchestrations between services in a composite web

service by using dependencies to define how services are combined and how the

behaviour of some given services influences the behaviour of others. Dependencies are

used to express the relationships that exist between services such as sequence, alternative,

compensation, activation or cancellation dependencies. They also associate preconditions

with service operations. The general definition of a dependency is:

Def.3.8 (Bhiri et al., 2006a): A dependency from service s1 to service s2

exists if a transition of s1 can fire an external transition of s2.

It is assumed that a transition can be an internal or external transition, with internal

transitions being fired by the service itself (e.g. complete(), fail(), or retry()) and external

transitions being fired by external entities (e.g. abort(), cancel(), or compensate()).

3.5 Transactional Patterns

59

The transactional patterns paradigm discusses simple patterns such as AND-split or

XOR-split, where a single service exists on each split branch. In addition, the way in

which the dependencies are defined does not allow for nesting in the composite service.

The failure handling and recovery mechanism are implemented through compensation

and alternative dependencies.

We have drawn inspiration from transactional patterns, but provide solutions for multiple

nested transactions. We extend the notion of transactional patterns to model multi-nested

transactions by introducing the following concepts (detailed discussion in Chapter 4):

 Atomic nodes, scopes, nested scopes, and execution paths and their transactional

dependencies and attributes;

 A hierarchical structure that mirrors the workflow structure of the LRT.

 Vitality of nodes, scopes, and execution paths;

 Encapsulation of dependencies on the scope and execution path level to facilitate

automated propagation of events;

 Management and compensation policies to support an underpinning framework

for imposing and automating the control flow of events.

60

Chapter 4

Model Architecture

4.1 Introduction

In this chapter, we discuss the underlying structure of the COMPMOD model. We

discuss features of the model, the representation of our workflow model, our model

assumptions, and formal definitions of the workflow patterns and the generic formal

definitions of transactional dependencies and management policies. This chapter forms

the basis for Chapters 5 and 6.

4.2 Features of COMPMOD

COMPMOD is a conceptual management framework for WF Long Running

Transactions, focusing on the control flow perspective of management. Transactions are

designed based on structured workflow schemas, where WF constructs are supported

4.2 Features of COMPMOD

61

with well-defined operational and transactional semantics. On the one hand, the model

aims at ensuring the reliability and integrity of transaction execution in the context of

long duration executed through autonomous and loosely coupled web services. On the

other hand, and given the business oriented nature of LRT’s, the model is aimed at

providing flexibility in incorporating business and compensation logic into the design of

transactions in a clear and user friendly way.

Transactional semantics of WF constructs are defined through behavioral dependencies

and management control policies. Dependencies are defined as predicate logic formulas

over component states and/or attribute values. Satisfying a dependency fires an execution

event, such that when an LRT or one of its components activates, completes, fails, force-

fails or compensates, an execution event is fired. A management policy assesses the fired

event and performs an action based on the operational semantics of the WF model. The

applied event-control-action mechanism is built on top of a recursive hierarchical

structure of the WF schema, and is facilitated through automated propagation

mechanisms that are merely influenced by the recursive hierarchical nature of the WF

schema.

The management of LRTs must proceed in two parallel directions:

(a) The management of the LRT during its normal execution mode, which must embrace

a reliable and efficient fault-handling and partial compensation mechanism.

Chapter 4. Model Architecture

62

(b) The management of the LRT during the execution of its compensation mode

comprehensive compensation, in case the LRT has failed to successfully complete.

To handle LRTs, a modelling and management system would ideally support the

following aspects. 1-3 are motivated by the structure of transactions and the fact that it is

at the business level, where a full understanding of the implications exists; 4 allows for

the separation of the actual process and handling of execution and exceptions in a vibrant

and flexible way; and 5-8 are requirements that ensure the practicality of the approach.

1- Multi-level nesting of transactions with reliable behavioural dependencies

between transaction components and across hierarchy levels;

2- Definition of designer-order compensation patterns that reflects the business logic

of the LRT;

3- Incorporating compensation logic into the business logic of long running

transactions through transactional dependencies;

4- Rule-based Policies for managing execution and compensation control flow;

5- Automated method for propagating activation and successful completion events

through the hierarchy structure as a management mechanism.

6- Automated method for propagating failure events through the hierarchy structure

as a failure handling mechanism.

7- Automated method for performing compensation actions while the LRT execution

is in progress, through backward and forward order compensations.

8- Flexibility in extending the model through new WF patterns.

4.2 Features of COMPMOD

63

Aspects 1-7 have been addressed in the proposed model and discussed in this thesis. The

flexibility of the model is expressed through the extensibility property of COMPMOD,

and is discussed in Chapter 8.

4.3 Representations of Nested LRTs

We use two main representations of the workflows in COMPMOD: a workflow

representation that allows to abstract away from sub workflows and a tree representation

that is used by the propagation mechanism.

In our model we have two basic components: nodes and execution paths. A node can be

an atomic node (a single web service) or a scope node – a set of semantically connected

nodes (atomic and/or scope). An execution path represents a trail of nodes that are

executed in sequential order. A scope node encapsulated by an execution path is

interpreted the same as an atomic node. In other words, scope nodes on an execution path

are like black boxes that encapsulates execution paths and other nodes.

4.3.1 Workflow Model

An LRT, at its highest level, is executed as a flat transaction, i.e. a sequence of nodes that

are executed sequentially (Figure 4.1). The main execution path is denoted as p0. A node

can be an atomic node or a scope node. Each scope creates two or more execution paths

that start from the split point and end at the join point of the scope. Each execution path is

a sequence of one or more nodes, executed in sequential order where nodes along the

Chapter 4. Model Architecture

64

path again can be atomic or scopes allowing arbitrary levels of nesting. Through the rest

of the discussion, we will use the term component to refer to both nodes (atomic/scope)

and execution paths.

Figure 4.1 A WF showing level 0 of a sample LRT

The modelling method allows for multi-level nested transactions to address demands

occurring in real cooperative business processes. In the representation model itself, we

see alternating levels of paths and nodes. The main execution path of a transaction is

regarded as level 0 in the workflow. Figure 4.2(a), demonstrates an expanded two level-

nesting of the sample LRT in Figure 4.1 and Figure 4.2(b) demonstrates the LRT with

level 2 of the WF collapsed.

Considering the execution path 𝑝1 in 𝑠𝑐𝑜𝑝𝑒2, the path consists of an atomic node 𝑛6

followed in sequence by a scope node 𝑠𝑐𝑜𝑝𝑒2.1 that in turn encapsulates three execution

paths. We provide a nodeList attribute on path objects to express this: for example

𝑝1.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡=[𝑛6,𝑠𝑐𝑜𝑝𝑒2.1]. If we collapse level 1 of the WF, the main execution path

becomes a flat WF that executes the nodes in p0.𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 = [𝑛1, 𝑛2, 𝑠𝑐𝑜𝑝𝑒1, 𝑠𝑐𝑜𝑝𝑒2,

𝑠𝑐𝑜𝑝𝑒3] in sequential order (figure 4.1).

4.3 Representations of Nested LRTs

65

Figure 4.2 A WF showing multi levels of a sample LRT

4.3.2 Hierarchical Structure Model

Transaction components –nodes and execution paths- are linked together in a hierarchical

structure. Each component has a single superior, and an ordered set of one or more

inferiors. More specifically:

Node component: A superior of any node is the execution path that encapsulates the

node. An atomic node is a leaf node that has no inferiors. A scope node has two or more

inferiors which represents the number of split execution paths it encapsulates.

Chapter 4. Model Architecture

66

Execution path component: The superior of any execution path is the scope node that

encloses it. The main execution path of an LRT has no superior. Each execution path has

one or more inferiors. The inferiors of a path represent an ordered set of one or more

nodes that the path encloses. The root of the recursive hierarchy is the main execution

path of the LRT 𝑝0. Figure 4.3 illustrates the hierarchy structure of the sample workflow

in Figure 4.2(a).

Figure 4.3 Hierarchal Structure of WF schemas

4.3.3 Transactional operators and scopes

COMPMOD’s WF schema is formed as a structured workflow that supports the design of

arbitrary nested levels of transactions. The well-formed structure of the LRT is forced by

the model, meaning that the burden of maintaining the balanced structure of (split and

join) patterns is imposed by the model.

4.3 Representations of Nested LRTs

67

A scope node starts with a split operator (OR, AND, or XOR) that is explicitly assigned

while constructing a scope. The syntax of the scope is defined as:

 ([])

When a scope is initially defined, a split operator and a list of split nodes are specified. A

split node can be an atomic node or a scope node, which facilitates the construction of

nested scopes.

The AND-split pattern in (Figure 4.4 (a)) is defined as (AND,[n1,n2,n3]) and is

implemented in COMPMOD as depicted in (Figure 4.4 (b)) where the split pattern is

coupled with a synchronisation point representing the implicit AND-Join. The number of

split nodes corresponds to the number of execution paths encapsulated within the scope.

Therefore, the scope in (Figure 4.4(b)) creates three execution paths namely p1, p2, and p3

which are represented by the order list PathList of the defined scope node.

A scope in COMPMOD is formally defined as:

Def.4.1: (Scope Definition)

A scope is defined as follows:

∀ = .. .𝒏 𝑳 = 𝒏

∀ = .. 𝒏 𝑳 . 𝒚 ={𝑨𝑻𝑶𝑴𝑰𝑪, 𝑪𝑶𝑷𝑬}:

 =(,[..]) →

 . 𝒉𝑳 =[..]

where operator {AND,OR,XOR}

Chapter 4. Model Architecture

68

As mentioned earlier, each execution path creates an ordered list of one or more nodes,

denoted by nodeList. When a node is appended to an existing execution path 𝑝𝑖, the node

is appended to 𝑝𝑖 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 . The main building block construct of the WF is the

sequence construct. A sequence pattern connects two nodes in a sequential order. The

sequence pattern is formally defined as:

Def.4.2: (Sequence pattern)

A sequence pattern is defined as follows:

node1.type={ATOMIC,SCOPE} and node2.type={ATOMIC,SCOPE}:

SEQPattern=(SEQ,node1,node2)

pi.nodeList=pi.nodeList+[node2] , node2.superior=pi

where pi=node1.superior

Accordingly, the two level nested scope of (Figure 4,4 (c)) can be denoted by the

following constructs:

Scope1=(OR,[(SEQ,n1,scope1.1),n2,n3]) where scope1.1=(XOR,[(SEQ,n4,n7),n5,n6]).

4.3 Representations of Nested LRTs

69

Figure 4.4 Scope Structure

4.3.4 Execution paths

The type of scope pattern determines the routing mode of its encapsulated paths. An

AND-scope creates two or more concurrent execution paths, while an OR-scope creates

a two or more concurrent paths where only a subset of these paths are executed during

runtime, the executed paths are those whose enabling condition are satisfied. An XOR-

scope creates two or more exclusive paths: the first path has the highest priority and

therefore execution starts with the path with the highest priority. If an exclusive path that

has an alternative path with lower priority fails to complete, the path is compensated in

backward order, until the split point of the scope is reached (this is done as part of the

Chapter 4. Model Architecture

70

forward compensation of the LRT), and then the alternative path is executed. Therefore,

execution paths are assigned with the following transactional attributes:

1. An execution path IsConcurrent if it is encapsulated within an immediate OR-

scope or AND-scope superior.

path.superior={AND,OR} path.IsConcurrent=TRUE

2. An execution path IsExclusive if it is encapsulated within an immediate XOR-

scope superior.

path.superior=XOR path.IsExclusive=TRUE

3. An execution path hasAlternative, if it IsExclusive and has a path with lower

priority in the same scope.

path.IsExclusive successor(path)≠NULL path.hasAlternative=TRUE

4. A concurrent path does not have an alternative.

 path.IsConcurrent=TRUE → path.hasAlternative=FALSE

5. Apart from the main execution path, a path must either be concurrent or

exclusive.

 path.IsConcurrent=TRUE → path.IsExclusive=FALSE

path.IsExclusive=TRUE→ path.IsConcurrent=FALSE

6. An execution path is IsEnabled if and only if it IsConcurrent path within an OR

immediate scope and its branching condition is satisfied at runtime.

7. The main execution path is a special case where:

path=p0 path.IsExclusive=FALSE path.IsConcurrent=FALSE

path.IsEnabled=FALSE

4.3 Representations of Nested LRTs

71

4.3.5 Vitality of components

Each LRT component has a vitality attribute that allows it to specify whether a

component is vital or non-vital. A vitality value IsVital={TRUE/FALSE} is assigned to

each component, either by specification or by evaluation. Vitality of atomic and scope

nodes is assigned by specification: that is, according to the business logic of the LRT.

Essentially, vitality allows the workflow designer to express whether the failure of the

specific service or scope of services can be tolerated and the workflow can proceed (an

example of a non-vital task might be one sending a progress message to the invoking user

– nothing in the process will be broken if the message is not sent).

Vitality of execution paths is assigned by evaluation according to the following rules. A

path is

• vital if it encapsulates at least one vital node.

• non-vital if all the nodes it encapsulates are non-vital.

Note that the decision of assigning the vitality value to nodes (atomic and scope) is based

on the business logic of the LRT. It is important to note that our management/

compensation model does not investigate or analyse the business logic of the LRT. It is

always assumed by the model that the logic provided for the LRT at design time is what

it is required from the transaction by the business level.

Vitality of components is utilised in the control propagation mechanism proposed in the

model. The transactional implication of the vitality measure of a component expresses the

Chapter 4. Model Architecture

72

impact of successful completion or failure of a component on its immediate superior and

on its successor in case of node components.

A vital node’s successful completion is necessary for

1- The successful completion of its superior path

2- The activation of its successor node(if any)

The failure of a vital node leads to the failure of it superior path (by propagation), and

consequently the execution of the path, ends.

Successful completion of non-vital nodes is desirable for the successful completion of

its enclosing path, but is not necessary. In other words, the failure of a non-vital node

will not fail its enclosing path unless it was a non-vital path and all its nodes have failed.

The same applies to the activation of a non-vital node’s successor, if one exists. The

successful completion of a non-vital node is desirable for the activation of its successor,

but not necessary. Hence, the failure of a non-vital node will still trigger the activation of

its successor (if any).

Execution paths are either concurrent or exclusive. The effect of the successful

completion or failure of paths, with respect to their vitality measure, is most evident for

concurrent paths.

The successful completion of a vital concurrent path is necessary for the successful

completion of its immediate superior scope. The failure of a vital concurrent path will fail

4.3 Representations of Nested LRTs

73

its superior scope, and consequently force-fail all the concurrent paths within the same

immediate superior scope.

The vitality of an exclusive path does not have a direct impact on the successful

completion or failure of its enclosing scope. An exclusive scope succeeds if one of its

exclusive paths successfully completes, and fails if all its exclusive paths fail to succeed

regardless of their vitality measure. Therefore, we consider only concurrent scopes when

discussing the assignment of vitality measure to scope nodes.

We classify concurrent scopes with regard to the assignment of vitality to the scope and

its encapsulated paths into three cases:

Case 1: a vital scope with at least one vital path.

Case 2: a non-vital scope with any combination of encapsulated vital/non-vital paths.

Case 3: a vital scope with all paths as non-vital.

Case 3 does not seem useful from the business point of view. However, while case 3

could be designed, it is not desirable, and hence, will exclude it through vitality

assumptions 2 below.

We justify our exemption of Case 3 as follows: vitality is a way of stating the necessity of

success of a specific component. If we assume that a scope is vital and is necessary to

succeed, then we implicitly assume that at least one of its paths is guaranteed to succeed.

Chapter 4. Model Architecture

74

In case 3, where not all paths are vital, they are all desirable but not necessary to succeed,

which seems to contradict with the vital assignment of the enclosing scope. However, it

may be argued that in some senses, a vital scope with only non-vital nodes would succeed

if only one of the nodes succeeded; thus we wished to leave the option to the business

process designer.

However, to ensure that processes are generally sensible, we have assumed logical

restrictions by the model with respect to the design of LRTs as listed in Section 4.7.

4.4 Workflow of OP Case Study in COMPMOD

We represent the OP business process in (Chapter 2, Figure 2.1) using COMPMOD

architecture. First, in Figure 4.5, we depict the workflow representation of OP in

COMPMOD. At this stage, we ignore transactional and compensation dependencies but

we will refer back to the OP workflow case study in Chapters 5 and 6. We assume that

the process logic of OP defines the OUTSOURCE_ANALYSIS activity as a non-vital

activity and hence its failure during runtime will not interrupt the execution of OP.

4.4 Workflow of OP Case Study in COMPMOD

75

Figure 4.5 OP workflow in COMPMOD

Syntactically, the OP workflow is defined as:

OP=(SEQ,SALES,(AND,CHARGE,OUTSOURCE_ANALYSIS,(SEQ,DELIVERY,

CHECK_GOODS)))

In the following, we list the transactional attributes of OP according to COMPMOD

model.

(1) Node Types:

Note that nodeType is a transactional attribute which is assigned for nodes and hence

the following values apply:

SALES.nodeType=ATOMIC Scope1.nodeType=SCOPE

CHARGE.nodeType=ATOMIC OUTSOURCE_ANALYSIS.nodeType=ATOMIC

DELIVERY.nodeType=ATOMIC CHECK_GOODS.nodeType=ATOMIC

Chapter 4. Model Architecture

76

(2) Node Lists:

Note that nodeList is a transactional attribute which is assigned for execution paths

and hence the following values apply:

p0.nodeList=[SALES,Scope1]

scope1.p1.nodeList=[CHARGE]

scope1.p2.nodeList=[OUTSOURCE_ANALYSIS]

scope1.p3.nodeList=[DELIVERY, CHECK_GOODS]

(3) Path Lists:

Note that pathList is a transactional attribute which is assigned for scope nodes and

hence the following values apply:

scope1.pathList=[p1,p2,p3]

(4) Vitality attributes:

Note that IsVital is a transactional attribute which is assigned for all workflow

components and hence the following values apply (Table 4.1):

Component IsVital
p0 TRUE

SALES TRUE

CHARGE TRUE

OUTSOURCE_ANALYSIS FALSE

DELIVERY TRUE

CHECK_GOODS TRUE

scope1.p1 TRUE

scope1.p2 FALSE

scope1.p3 TRUE

Table4.1 Vitality attributes of OP components

4.4 Workflow of OP Case Study in COMPMOD

77

(5) Path Routing Attributes:

Note that routing attributes are transactional attributes which are assigned for

execution paths and hence the following values apply:

Path IsConcurrent IsExclusive hasAlternative

po FALSE FALSE FALSE

scope1.p1 TRUE FALSE FALSE

scope1.p2 TRUE FALSE FALSE

scope1.p3 TRUE FALSE FALSE

Table 4.2 Path attributes of OP case study

4.5 Reactive Management and Execution states

The management system of transactions (COMPMOD) is implemented as a reactive

system controller (Wieringa, 2003) where system components change their execution

states and actions in response to stimuli/events. In our model, an event is fired as a result

of a behavioral dependency satisfaction. A stimulus is triggered as a result of a transition

in the execution state of a transaction component or as a result of the application of a rule

(policy), leading to the firing of an event. In other words, COMPMOD is an

Event/Control driven WF management system that reacts continuously to stimuli/events

until the LRT execution finally terminates in a state that is meaningful from both a

system as well as a business perspective.

During the execution life cycle of the transaction, the LRT and its components go

through different execution states and they are marked with their current execution state.

The state transition diagrams are depicted in Figures 4.6-4.9. Initially, the LRT and all its

Chapter 4. Model Architecture

78

components are marked as NOT-ACTIVATED. State transitions are triggered by execution

events, and they are marked by the transition actions deployed in the management

policies. For example, when an activation event is fired for the LRT, commencing its

execution, the activation event is assessed by an activation policy and the action

activate(LRT) is performed, which transforms the state of the LRT from NOT-ACTIVTAED

to ACTIVATED. Activation of the LRT fires the activation event of the main execution

path, and subsequently an activate(p0) action is performed which transforms the state of

p0 from NOT-ACTIVTAED to ACTIVATED. The effects of events and actions in our model

obligate a chain of state transformations that continuously change the state of the LRT

and its components, in accordance with the management and compensation policies. The

chain of transformations is controlled by the propagation of an events/actions mechanism

implemented by the COMPMOD model. If we abstract from the propagation mechanism,

then the events and actions have identical effects in our mode, and therefore, the two

terms may be used alternatively to refer to state transformation of components.

Figure 4.6 STD for LRT

4.5 Reactive Management and Execution States

79

Figure 4.7 STD for atomic nodes

Figure 4.8 STD for scope nodes

Chapter 4. Model Architecture

80

Figure 4.9 STD for execution paths

The state transition in Table 4.3, lists the state transition actions as implemented in the

management policies. Note that these actions do not exhibit the propagation of state

transformations across LRT components. The propagation mechanism and the semantics

of execution states are discussed in detail in Chapters 5 and 6.

Action Current State Next State
activate(LRT/component) NOT-ACTIVATED ACTIVATED
succeed(LRT/component) ACTIVATED SUCCEEDED
fail(LRT/component) ACTIVATED FAILED
forcefail(LRT/component) ACTIVATED FAILED
compensate(atomicNode) SUCCEEDED COMPENSATING
compensate(scopeNode/path) {SUCCEEDED ,FAILED} COMPENSATING
skip(atomicNode) {NOT-ACTIVATED,

FAILED,ABORTED}
SKIPPED

skip(scopeNode) NOT-ACTIVATED SKIPPED
compensated(component) COMPENSATING COMPENSATED

Table 4.3 STT of actions

4.6 Hierarchical Transactional Dependencies and Policies

In the formal definition of the semantics of COMPMOD, we make a clear distinction

between the transactional behaviour of a single component and the transactional

4.6 Hierarchical Transactional Dependencies and Policies

81

behaviour of interrelated components. The behaviour of a single component in relation to

its environment is formalised by the transactional dependencies that are defined for each

component, while interrelated behaviour between LRT components is formalised by

management policies.

In the following subsections, we show how this is realised in COMPMOD.

4.6.1 Dependencies

The LRT4 and all of its components (atomic nodes, scope nodes, and execution paths) are

defined with transactional dependencies that set the execution conditions under which

each component may raise one of the execution events (failure, completion, force-fail,

compensation or compensation completion). A component can raise an execution event

depending on a single change of state of another component. A component can also raise

an execution event depending on the single change of state of two or more other

components.

Dependencies are defined in encapsulated style which is purely driven by the hierarchy

structure of the WF schema. Encapsulation means that interrelated components5 can only

interact with each other through their immediate superior component but can interact

directly with their superior or their immediate sibling components, e.g. a successor and a

predecessor of a node on the same execution path. A component can also interact

4 In this case, it is considered as a component.
5 As an example: nodes running on distinct concurrent paths of the same scope.

Chapter 4. Model Architecture

82

directly with its immediate inferiors, e.g. a scope with its immediate encapsulated

execution paths.

Behavioural6 dependencies are defined in first order logic and in terms of sets of pre-

conditions that, when satisfied at run time, lead to an event being fired.

The general definition for a behavioural dependency is:

Def. 4.3 A behavioural dependency exists from componentj to componenti iff a

state transition in componenti can fire an execution event for componentj:

𝑫ep(𝒏 𝒏 j):= 𝑪 𝒏 (𝒏 𝒏 .)

Behavioural dependencies can also be defined between a set of sibling components and

their immediate superior component, or between a component and its superior, essentially

extending Def. 4.3 to allow for:

1- A number of sibling components to fire an execution event for the superior

component:

Dep(superior):=PreCond([sibling1.state..siblingn.state])

An example: a failure event fires for an execution path when all its encapsulated

nodes fail.

6 The terms behavioral, transactional and executional dependencies are used

interchangeably in the thesis, depending on the context it is used in, but they refer to the

same concept.

4.6 Hierarchical Transactional Dependencies and Policies

83

2- A component to fire an execution event for an inferior component:

Dep(component):=PreCond(componentSuperior.State)

An example: an activation event is fired for the first node in an execution path

when the path is activated.

3- A component to fire an execution event for its superior component:

Dep(component):=PreCond(componentInferior.State)

An example: a failure event is fired for an execution path if a vital node on the

path has failed to complete.

The way dependencies are defined imposes a hierarchical relationship between

components and facilitates the hierarchical propagation of events through management

policies.

4.6.2 Policies

Management rules (or policies) incorporate autonomy into systems. The most common

form is that of ECA (event condition action) rules which present an event driven

approach. ECA rules in COMPMOD are implemented to model the expected execution

behavior of the LRT. When an event is fired, it triggers an ECA rule, and if the condition

holds, an appropriate action takes place. ECA rules have the following pseudo generic

form:

Chapter 4. Model Architecture

84

Def.4.4 (Generic Policy Form)

ON event IF condition DO action

The event part of the rule can be (a) an internal system generated event such as

completion, failure or cancelation of an atomic node or, (b) an external event fired as a

result of a dependency condition satisfied for a component or, (c) a stimulus: a result of

executing a state transition event of a component. The condition part is one or more

connected Boolean expressions that need to hold for the rule to be applied. The action is

a sequence of one or more actions to be performed in case the rule is applied, and can in

turn introduce new events (stimuli) that need to be handled. Basic to the set of

management policies is a well-defined mechanism for marking the execution states of

components, based on the transactional semantics of the model.

The set of state transition actions that are implemented in the policies are listed in Table

4.1. Note that actions lead to raising an event (e.g fail()), but also have a side effect on the

state of the respective component, as follows:

if component.state=ACTIVATED

then component.state:=FAILED

Analogously, the event raised by an action (e.g. succeed()) may also have a side effect on

the state of its immediate neighbor components. For example, succeed(exclusivePath)

leads to succeed(exclusivePath.superior).

4.6 Hierarchical Transactional Dependencies and Policies

85

COMPMOD policies reflect the following transactional aspects:

1- business logic of the LRT (e.g. a fail policy states that if a node is vital and

failed, its superior path fails);

2- semantics of a COMPMOD model (e.g. a force fail policy states that if a force-

fail event is fired for an activated atomic node, the node is aborted);

3- semantics of WF patterns (e.g. a completion policy states that the successful

completion of an exclusive path signals the successful completion of the scope).

Based on their transactional implications, we split policies in COMPMOD into three

categories:

1- Management Policies: automate the control flow of activation and completion

events;

2- Propagation Policies: automate the propagation of events through the hierarchy

structure of the WF schema. Propagation of failure and force-fail events defines

the Failure-Handling mechanism of the model;

3- Compensation Policies: automate control flow of compensation events.

Transactional dependencies, Policies, and Failure-Handling mechanisms are discussed in

Chapters 5 and 6.

Chapter 4. Model Architecture

86

4.7 Model Assumptions

The model adopts semantic assumptions that are essentially implemented in the proposed

formalism. We operate our mechanisms based on these assumptions, but provide an

underpinning structure that allows them to be relaxed or extended without affecting the

formalism of the model.

4.7.1 Vitality Assumptions

Assumption 1: If the successful completion of a node is necessary for the successful

completion of the LRT, the node must be defined as a vital node, and must be preceded

with a hierarchy of vital superiors; that is, from the node upwards to the root of the

hierarchy (the main execution path).

Assumption 2: The main execution path of the LRT should be vital, and must

encapsulate at least one vital node.

Assumption 3: If all paths in a scope are non-vital, their encapsulating scope should be

non-vital by specification.

These assumptions are reasonable in practical business processes, and will be discussed

in more detail in Chapter 4, section 4.3.5.

4.7.2 Failure Assumptions

It is assumed by the model that a failure event for an atomic node (web service)

intuitively means that the node cannot successfully complete its required task. This

4.7 Model Assumptions

87

assumption allows for a broader meaning of failures than to restrict it to hardware or

communication failures. We assume that an atomic node signals an internal failure event

for the following reasons:

Assumption 1: Network or remote server failure, where the node cannot be retried.

Assumption 2: Network or remote server failure, where the node had been retried a

specific number of times without success.

Assumption 3: The execution time of a node has exceeded its timeout constraints.

Assumption 4: The node gave a FALSE feedback when a TRUE feedback was expected.

For example, if a flight booking task tries to book a flight for a specific date on a specific

airlines but returns with no available booking, the node is considered as failed.

The failures of the nodes listed above are internal, in the sense they are out of the control

of the management system. However, a node may also be forced to abort as a result of an

external fail event enforced by a force-fail policy. This is the case when a running node is

aborted, due to the failure of it enclosing scope.

4.7.3 Cancellation assumptions

Assumption 1: The LRT can be cancelled by the end-user by raising an external

cancellation event at any time during its normal execution.

Assumption 2: A web service can be cancelled by its provider by raising an internal

cancellation event and its cancellation is regarded as failure of the node.

Chapter 4. Model Architecture

88

Note that the cancellation, failure or force fail events of a component in COMPMOD all

result in the component being failed; except for running atomic nodes (web services),

they are aborted.

Although the model does not support external cancellation events for components, it

provides the necessary infrastructure to extend the model, such that external cancellations

of components by the user are possible. The force-fail policies deal with force-fail events

that are externally fired, due to the propagation of a failure event from a superior. The

policies can also be extended to consider external cancellation events.

4.7.4 Compensation assumptions

Our compensation mechanism is based on traversing compensable nodes on a

compensating path, according to a predefined order which is specified at the design time

and depends on mode of compensation being applied. This order is sequential reverse

order of activation in case of partial compensations and is customized (designer defined

order) in case of comprehensive compensations and we apply the following assumptions:

Assumption 1: Each node (web service) is paired with compensating actions7.

The assumption can be relaxed by adding an attribute to denote pivot nodes (Mehrotra et

al., 1992) (i.e. nodes that once they are succeeded, their effect cannot be undone).

Consequently, customized compensation dependencies can only be restricted to non-pivot

7 Similar to “compensators” of SAGA

4.7 Model Assumptions

89

nodes. If a pivot node is traversed in a compensating path, then it can be skipped (in

partial compensation mode) or marked visited (in comprehensive compensation mode).

The assumption can be further relaxed by assuming null compensators for tasks that may

not be logically undone, e.g. calculating an order price.

Assumption 2: The compensation of an atomic node (web service) is guaranteed to

succeed.

It is possible to relax this assumption, and consider failures of compensating actions for

atomic nodes. In this case, we expect that feedback is generated to the user to take further

action regarding the unperformed compensation of the node. Compensation failure

policies may be added to assess such failure events and mark the node as failed.

Consequently, a failed node is skipped or visited while traversing a compensating path.

90

Chapter 5

Management Mechanism

5.1 Introduction

In this chapter, we show how the model’s operational semantics are formalized through

transactional dependencies and management policies. Formal descriptions of the LRT

and its components incorporate three interrelated management mechanisms in the

formalism:

1- Autonomous Control Management Mechanism which is realized through

activation and completion dependencies and policies.

2- Autonomous Failure Handling Mechanism which is realized through failure and

force-fail dependencies and policies, and is merely automated by the propagation

mechanism embedded in failure and force-fail semantics.

5.1 Introduction

91

3- Autonomous Compensation Mechanism, which is realized through compensation

dependencies and policies.

The control flow and failure handling mechanisms are defined through control charts, and

are linked to dependencies and management policies. The control charts are interrelated

in the flow of events and actions, and accordingly, some control flow actions appear in

the charts before referencing them in the discussion, or vice versa. In addition, the flow of

events and actions necessitates navigation through the control charts. Compensation

management, mechanisms and their related control charts are discussed in Chapter 6.

The discussion in this chapter starts by showing how sequence and concurrency control is

handled by COMPMOD semantics with respect to vitality measures. A discussion of

management and failure handling mechanisms follows. As an illustration, we apply the

defined dependencies in this chapter on the OP workflow case study.

5.2 Path and Scope Execution

In the following subsections, we show how the execution semantics of execution paths

and scopes are captured in COMPMOD and how the consensus of their successful

completion or failure –with respect to vitality measures- is resolved. It is important to

note that in the formal definition of the completion conditions of the LRT and its

components, the model distinguishes between completion and successful completion

events for execution paths and concurrent scopes8. In general, a completion dependency

8 Exclusive scopes share semantics of execution paths

Chapter 5. Management Mechanism

92

fires a completion event, indicating that a component has finished its execution while a

completion policy evaluates a successful completion event and subsequently marks a

component as SUCCEEDED. As for atomic nodes, a completion event is concluded as

successful completion.

5.2.1 Sequence Control

A sequence of nodes on a path commences its execution by the first node in the path, and

ends its execution when the last node in the path ends its execution. Execution paths with

single nodes are the case where the node is considered as the first node and last node

simultaneously. An execution path is assessed as vital or non-vital by evaluation (Chapter

4, section 4.3.5), and hence the vitality of the path reflects the vitality of its encapsulated

nodes and vice-versa. A vital path encapsulates at least one vital node while non-vital

paths encapsulate non-vital nodes only. The first node of a sequence is of importance to

the activation of the sequence of nodes (if any) on the same path. The last node of the

path is of importance to the successful completion or failure of its superior path. We refer

our discussions in this section to (Figure 5.1) where we depict three different execution

paths with different combinations of vital and non-vital nodes.

5.2 Path and Scope Execution

93

Figure 5.1 Execution path scenarios with respect to vitality

In a non-vital path, execution flows from start node to end node of a path and failures of

non-vital nodes will not stop the path from completing its execution (e.g. failure of nodes

in p2). As for vital paths, execution flows from start node to end node of a path as long as

no failure of a vital node is triggered, i.e. execution control can only reach the last node

iff all preceding vital nodes (if any) have succeeded (e.g. execution will reach n9 in p3 as

long as n7 has succeeded).

Two transactional dependencies signal the end of execution of a path; they are

completion CompLDep() and failure FailDep() dependencies.

The semantics of completion and failure of execution paths are defined as follows:

1- A path completes CompLDep(path)=TRUE when the last node in the path ends

its execution either by SUCCEED or FAIL (e.g. execution of p1 completes when

execution of n3 completes).

2- A non-vital path fails FailDep(path)=TRUE if all nodes on the path FAIL (e.g.

FailDep(p2)=TRUE if n4, n5, and n6 all fail).

Chapter 5. Management Mechanism

94

3- A non-vital path succeeds if it completes CompLDep(path)=TRUE and no failure

event is fired for the path FailDep(path)=FALSE (e.g. p2 succeeds if

CompLDep(p2)=TRUE and FailDep(p2)=FALSE).

4- It is a failure propagation policy of the model that failure of a vital node will fail

its enclosing path.

Def. 5.1: (propagation of vital-node failure)

𝒏 𝑰 (𝒏) 𝑷 𝒉 𝑨𝑰𝑳𝑬𝑫

For example, if n2 in p1 fails, then p1 fails.

The successful completion of vital and non-vital paths is assessed after a completion

event of the path is fired, and depends on the final execution state of the last node on the

path. When the last node ends its execution either by success or failure, a completion

event is fired for its superior path:

Def. 5.2: (completion of path)

 () ()

𝑪 𝑳𝑫 (𝑷 𝒉) 𝑻 𝑬

For example, 𝑠 𝑐𝑐𝑒𝑒𝑑(𝑝 𝑛) 𝑖 (𝑝 𝑛)

 𝑜 𝑝𝐿 𝑒𝑝(𝑝)

Successful completion of the last node in a path imposes the following semantics:

1- In case of a non-vital path, successful completion of the last node in the path

indicates that a failure event could not possibly fire for its superior path since a

failure event fires only when all nodes on a path fail to succeed, thus:

Def. 5.3:

 () 𝑷 𝒉 𝑰

 𝑫 (𝑷 𝒉) 𝑨𝑳 𝑬

5.2 Path and Scope Execution

95

For example, if both n4 and n5 in p2 fail but n6 succeeds, then

FailDep(p2)=FALSE.

2- In case of a vital path, if the execution control reaches the last node on a vital

path, this means that the path has not failed due to failure of a preceding vital

node on the path (from Def.5.1), and thus:

Def. 5.4:

 () 𝑷 𝒉 𝑰

 𝑷 𝒉 𝑨𝑰𝑳𝑬𝑫

For example, if execution reaches n9 in p3, it is not possible that n7 has failed and

has consequently caused the failure p3 by propagation rule.

Therefore, we can conclude that (a) from Def.5.2, if the successful completion of a node

triggers a completion event of its superior path then the node is the last in the path, and

(b) from Def.5.3 and Def. 5.4, if the last node in a path succeeds then the path cannot

possibly have failed. Hence, the successful completion of a node that triggers a

completion event for the path (i.e. it is the last node in path), and also triggers the

successful completion of its enclosing path:

Def. 5.5: (successful completion of a vital and non-vital path)1
 (𝒏) 𝑪 𝑳𝑫 (𝑷 𝒉) 𝑻 𝑬

 (𝑷 𝒉)

Failure of last node in a vital path can lead to either a successful completion or a failure

of its superior path depending on the vitality of the node as follows:

1- Vital node: from Def.5.1 we conclude that the failure of vital last node will fail its

superior (e.g. failure on n3 in p1).

Chapter 5. Management Mechanism

96

2- Non-vital node: failure of a non-vital last node on a vital path will trigger a

completion event of its superior path (from Def. 5.2), and implicitly indicates that

no vital node has failed on the path (from Def.5.1). Hence, we conclude that a

failure of the last non-vital node on a vital path will succeed its superior path (e.g.

failure of n9 on p3 will still result in succeeding p3).

Def. 5.6: (successful completion of a vital path)2

 𝒏 𝑰 (𝒏) 𝑷 𝒉 𝑰
 𝑪 𝑳𝑫 (𝑷 𝒉) 𝑻 𝑬
 (𝑷 𝒉)

Failure of last node in a non-vital path can lead to either a successful completion or a

failure of its superior path, depending on the failure dependency evaluation of the path as

follows:

1- If all the nodes on the path fail, then the path fails. Hence:

Def. 5.6: (failure of a non-vital node)

 𝑫 (𝒉) 𝑻 𝑬 𝒉 𝑰 (𝒉)

For example, when n6 in p2 fails where n4 and n5 has failed as well, then p2 fails.

2- If no failure event is fired for the path then the path succeeds. Hence:

Def. 5.7: (successful completion of a vital path)3

 (𝒏) 𝒉 𝑰
 𝑪 𝑳𝑫 (𝑷 𝒉) 𝑻 𝑬
 𝑫 (𝑷 𝒉) 𝑨𝑳 𝑬
 (𝑷 𝒉)

For example, when n6 in p2 fails but FailDep(p2)=FALSE, then p2 succeeds

because some nodes in p2 have succeeded.

5.2 Path and Scope Execution

97

As a result, failure events raised by failure dependencies are only obvious for non-vital

paths and hence are only defined for non-vital paths. However, completion dependencies

are defined for both, vital and non-vital paths.

Exclusive scopes in COMPMOD are a broader form of sequencing where only one out of

two or more exclusive paths is required to succeed. The successful completion of an

exclusive scope is triggered by the successful completion of one of its exclusive paths,

and therefore exclusive scopes are not defined with completion dependencies.

Def. 5.8: (successful completion of exclusive scope)

 (𝒉) 𝒉 𝑰 𝑬 ()

The failure of an exclusive scope is triggered by the failure of its last execution path

which intuitively indicates that all paths within the scope have failed. Note that the last

exclusive path in the scope has no alternative.

Def. 5.9: (failure of exclusive scope)

 (𝒉) 𝒉 𝑰 𝑬 𝒉 𝒉 𝑨 𝒏

 ()

Chapter 5. Management Mechanism

98

5.2.2 Concurrency Control

Unlike execution paths, the vitality of scope nodes in COMPMOD is assigned by

specification. In section 4.3.5, we classified concurrent scopes into three cases with

respect to vitality of the scope vs. the vitality of its encapsulated paths. The vitality of a

scope does not reflect the vitality of its encapsulated components and vice-versa; hence,

we define the operational semantics of concurrent scopes with respect to the vitality of

their concurrent paths and irrespectively of the vitality of the enclosing scope.

A concurrent scope encapsulates execution paths that are executed concurrently, and their

execution is synchronized at the join end of the scope. Activation dependencies formally

define the split point of the scope whereas the synchronizer of the scope is formally

defined through completion and failure dependencies.

A concurrent scope starts its execution at the split point of the scope by activating all its

concurrent paths 9 . All paths are executed concurrently and each path follows the

sequence semantics discussed in Section 5.2.1 regarding their successful completions and

failure semantics.

A completion dependency ComplDep() fires a completion event when all concurrent

paths have finished their executions either by failing or succeeding. A failure dependency

FailDep() fires a failure event when all concurrent paths fail to complete (in the case of

OR scope this means all concurrently enabled paths). Before we introduce our failure and

9 Enabled parallel paths in case of OR-scopes

5.2 Path and Scope Execution

99

successful completion semantics, two important issues regarding concurrent semantics

are discussed, namely, deadlocks and propagation policy.

Deadlocks: in the context of concurrent executions, there are some conditions under

which the behavior of concurrent paths could lead to deadlock situations because the

behavior of the synchronizer becomes undefined. We list these conditions and show how

they are prevented thorough our proposed operational semantics. A synchronizer will

deadlock if:

1- In a concurrent (AND/OR) scope, one or more than one of the activated

concurrent paths do not respond with failure or completion events caused by a

latency in response from a node on the path. However, failure assumption 3

(Chapter 4, section 4.7.2) states that a failure is triggered for a node when the

execution time of a node exceeds its timeout constraints. Therefore a path is

always guaranteed to finish its execution and this type of deadlock is relieved.

2- In an OR scope, a scope activates but none of the conditions associated with its

encapsulated paths evaluates to TRUE. In this case, the behavior of the

synchronizer will deadlock. Therefore, we assume that an activated OR scope

with no enabled paths is a failed scope and define its failure dependency

accordingly.

Propagation policy: it is a propagation policy of COMPMOD that failure of a vital

concurrent path will fail its superior scope:

Chapter 5. Management Mechanism

100

Def. 5.10: (propagation of vital path failure)
 𝒉 𝑰 𝒉 𝑰 𝒏 𝒏 (𝒉)
 𝑨𝑰𝑳𝑬𝑫

In order to define successful completion and failure criteria for concurrent scopes, we

must consider the three possible amalgamations of encapsulated paths (see Figure 5.2 for

illustrations):

Figure 5.2 Concurrent scope cases with respect to vitality

of encapsulated paths

Case 1: The scope encapsulates only vital paths. In this case, the scope successfully

completes if (a) the scope completes its execution (i.e. ComplDep(scope)=TRUE) and (b)

all paths succeed. From Def. 5.1, we conclude that the successful completion of all

concurrent paths implies that scope.state≠FAILED. For illustration, scope1 succeeds only

if both p1 and p2 complete their executions (i.e. CompLDep(scope1)=TRUE) and they

5.2 Path and Scope Execution

101

both succeed. Since p1 and p2 are both vital, the possibility of scope1 failing by

propagation is not the case, hence it is guaranteed that scope1.state≠FAILED.

Case 2: The scope encapsulates at least one vital path and at least one non-vital path. In

this case, the scope succeeds if it completes (i.e. CompLDep(scope)=TRUE) and all vital

paths complete (i.e. scope.state≠FAILED) and all non-vital paths complete either by FAIL

or SUCCEED (i.e. CompLDep(scope)=TRUE). As an example, in scope2, when p1 and p2

complete their execution, then CompLDep(scope2)=TRUE. If p1 succeeds then scope2

cannot possibly fail by propagation (i.e. scope2.state≠FAILED). The final execution state

of p2 (since it is non-vital) does not affect the succeeding of scope2.

Hence:

Def. 5.11: (successful completion of synchronized concurrent paths, cases 1,2)
𝑪 𝑳𝑫 () 𝑻 𝑬 𝑨𝑰𝑳𝑬𝑫 ()

Note that in case 1 and case 2, the successful completion of the scope ensures the

successful completion of its vital paths and thus the following implication holds:

 () 𝑫 () 𝑨𝑳 𝑬

Case 3: The scope encapsulates only non-vital paths. In this case, the scope succeeds if it

is completed (i.e. CompLDep(scope)=TRUE) and no failure event is fired for the scope

and (i.e. FailDep(scope)=FALSE). For example, scope3 succeeds when both p1 and p2

complete (i.e. CompLDep(scope3)=TRUE) but at least p1 or p2 succeeds (i.e.

FailDep(scope3)=FALSE).

Chapter 5. Management Mechanism

102

Hence:

Def. 5.12: (successful completion of concurrent paths, case3)
 𝑫 () 𝑨𝑳 𝑬 𝑪 𝑳𝑫 () 𝑻 𝑬

 ()

Note that in case 3, inexistence of vital paths within the scope ensures that the scope

could not fail through the propagation of a failure event, and thus s

 𝑨𝑰𝑳𝑬𝑫 holds.

Therefore, when a completion event is fired for a concurrent scope, if the scope has not

been failed by a propagation rule (explicitly covers case 1, 2, and implicitly 3) and there

is no failure event fired for the scope (explicitly covers case 3, and implicitly 1 and 2),

then the scope succeeds. Hence:

Def. 5.13: (successful completion of concurrent scope)
𝑪 𝑫 () 𝑻 𝑬 𝑫 () 𝑨𝑳 𝑬
 𝑨𝑰𝑳𝑬𝑫

 ()

Failure of a concurrent scope is triggered in two distinct ways:

1- Prompted by the assessment of the propagation policy (Def. 5.10): cases 1,2. For

example, failure of p1 in scope1 will fail scope1 by propagation.

2- Failure event raised by a failure dependency (i.e. FailDep(scope)=TRUE): case3.

It could be the case that a scope of type case 2 encapsulates one vital path and one or

more non-vital paths where all non-vital paths fail, and the vital-path fails but was the last

path to synchronize, in this case two failure events are triggered for the scope, one by

propagation and one by satisfaction of the failure dependency of the scope. Therefore,

5.2 Path and Scope Execution

103

when a failure event is fired for a concurrent scope, and if the state of the scope is not

failed by a propagation of failure event, the scope is failed. Hence:

Def. 5.13: (failure of a concurrent scope)
 𝑫 () 𝑻 𝑬 𝑨𝑰𝑳𝑬𝑫 ()

To illustrate Def. 5.13 we assume the following completion scenarios for p1 and p2 in

scope2. We assume that p2 fails first. p2’s failure will not affect the state of scope2 since

p2 is not vital. We assume that the vital path p1 fails next. Two failure actions will take

place as a consequence of p1’s failure. The state of scope2 will change to FAILED by the

propagation rule. At the same time FailDep(scope2) will signal TRUE since all

encapsulated paths of scope2 have failed. Hence, the general definition of failure

semantics Def. 5.13, checks first that scope state is not already FAILED to avoid failing

the scope twice.

Note that a similar argument based on enabled paths concurrent paths can be made for

completion, successful completion, and failure semantics.

5.3 Control Management Mechanism

The control flow of the model is automated through a series of activation and completion

events/actions as depicted in Control Charts 1 through 7. We discuss the activation and

completion semantics in the following sub sections and relate to the relevant

dependencies and policies.

Chapter 5. Management Mechanism

104

5.3.1 Activation Semantics

Activation dependencies are defined for execution paths and nodes (Table 5.1). A

component activates according to the following hierarchical control structure:

1- Activation of LRT triggers an activation event for the main execution path

(ActD.1).

2- Activation of a path triggers an activation event for the first node in the path

(ActD.2).

3- Successful Completion10 of a node triggers an activation event for the succeeding

node (if any) (ActD.3).

4- Failure11 of a non-vital node triggers an activation event for the succeeding node

(if any) (ActD.3).

5- Activation of an AND-scope triggers activation events for all concurrent paths

within the scope (ActD.4).

6- Activation of an OR-scope triggers activation events for all enabled concurrent

paths within the scope (ActD.5).

7- Activation of an XOR-scope triggers an activation event for the first path in the

scope (ActD.4).

8- Compensation completion12 of an exclusive path, that has an alternative, triggers

the activation of the next exclusive path (ActD.6).

10 Successful completion dependencies and policies are discussed in section 5.3.2.
11 Failure semantics are discussed in section 5.4.1
12 A compensation completion event signals that the compensation of a path has

completed (Chapter 6, section 6.2.2.2)

5.3 Control Management Mechanism

105

In order to automate activation events, we apply activation policies, listed in Table 4.2.

Activation Policies assess activation events and mark the execution state for a component

as ACTIVATED. ActR.3 ensures that components are only activated if their superior is

activated. ActR.1 is triggered by a system generated internal activation event of the LRT

and ActR.2 activates the main execution path.

Dep # Dependency Component

ActD.1 𝑨 𝑫 () 𝑳 𝑻 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 Main path 𝑝
ActD.2 𝑨 𝑫 () 𝒉 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 First node in a path
ActD.3 𝑨 𝑫 (𝒏)

(𝒏 𝑪𝑪𝑬𝑬𝑫𝑬𝑫) (𝒏 𝑰 𝒏
 𝑨𝑰𝑳𝑬𝑫)

Sequential Nodes :
𝑛𝑜𝑑𝑒 successor of
𝑛𝑜𝑑𝑒

ActD.4 𝑨 𝑫 (𝒉) 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 1- Concurrent paths
of AND scope
2- First path in XOR
scope

ActD.5 𝑨 𝑫 (𝒉) 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 𝒉 𝑰 𝑬𝒏 Concurrent paths of
OR scope

ActD.6 𝑨 𝑫 (𝒉)
 𝒉 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫

Paths 2..m in XOR
scope where m>=2

Table 5.1 Activation Dependencies

Rule# Policy Component
ActR.1 ON “activation event of LRT”

IF LRT.state=NOT-ACTIVATED
DO activate(LRT)

LRT

ActR.2 ON ActDep(𝑝)
DO activate(𝑝)

Main execution
path P0

ActR.3 ON ActDep(component)
IF component.superior.state=ACTIVATED and

 component≠p0
DO activate(component)

atomic node,
scope, and
path≠p0

Table 5.2 Activation Policies

The activation mechanism is depicted in Control Charts 1-3. Note that activation of a

succeeding node in a sequence depends on the completion state of its predecessor node as

Chapter 5. Management Mechanism

106

is illustrated in charts 4 and 7 (successful completion of node and failure of non- vital

node respectively).

 Control Chart 1. Activation of LRT Control Chart 2. Activation of Path

Control Chart 3. Activation of Node

5.3 Control Management Mechanism

107

5.3.2 Completion Semantics

In this section, we relate our discussion to the completion dependencies and policies

listed in (Tables 5.3 and 5.4) and control charts (4-7).

 Atomic nodes and exclusive scopes are not defined with completion dependencies;

instead, their successful completion event is assessed by completion policies. Completion

dependencies are explicitly defined for execution paths and concurrent scopes. A

completion event signals that the path/scope has ended its execution. Subsequently, a

completion policy concludes if the path/scope has successfully completed and hence

marks the path/scope as SUCCEEDED.

Dep # Dependency Component
CompLD.1 𝑪 𝑳𝑫 (𝒉)

 𝑪𝑪𝑬𝑬𝑫𝑬𝑫 𝑨𝑰𝑳𝑬𝑫)

Path

CompLD.2 𝑪 𝑳𝑫 ()

⋀ (𝒉 𝑪𝑪𝑬𝑬𝑫𝑬𝑫 𝒉 𝑨𝑰𝑳𝑬𝑫)

AND scope with m
concurrent paths

CompLD.3 𝑪 𝑳𝑫 ()

⋀

(𝒉 𝑰 𝑬𝒏

(
 𝒉 𝑪𝑪𝑬𝑬𝑫𝑬𝑫

 𝒉 𝑨𝑰𝑳𝑬𝑫
))

OR scope with m
concurrent paths

Table 5.3 Completion Dependencies

Chapter 5. Management Mechanism

108

Rule# Policy Component
CompLR.1 ON “successful completion event of atomic node”

DO succeed(node)
Atomic node

CompLR.2 ON succeed(node)
IF CompLDep(node.superior)=TRUE
DO succeed(node.superior)

Vital and non-
vital path with
succeeded last
node

CompLR.3 ON succeed(path)
IF path=𝑝
DO succeed(LRT)

LRT

CompLR.4 ON succeed(path)
IF path.IsExclusive=TRUE
DO succeed(path.superior)

Exclusive scope

CompLR.5 ON CompLDep(scope)
IF scope.state≠failed and
 FailDep(scope)=FALSE
DO succeed(scope)

Concurrent
scope

CompLR.6 ON fail(node)
IF ¬node.IsVital and node.superior.IsVital and
CompLDep(node.superior)=TRUE

 DO succeed(node.superior)

vital path with
failed non-vital
last node

CompLR.7 ON fail(node)
IF ¬node.IsVital and ¬node.superior.IsVital and
CompLDep(node.superior)=TRUE and
FailDep(node.superior)=FALSE

 DO succeed(node.superior)

non-vital path with
failed non-vital
last node

Table 5.4 Completion Policies

The completion and successful completion events of a component have a transactional

impact on its interconnected components and are modelled as follows:

1. When an atomic node is activated, the system awaits for an internal event

indicating its failure or completion (chart 3). An internal completion event for an

atomic node signals the successful completion of the node. The completion event

is assessed by the completion policy (CompLR.1), and the node is marked as

SUCCEEDED.

2. Successful completion of a node (chart 4) has an impact on (a) the activation of a

succeeding node on the same path if any, or (b) on the completion of its superior

path if the node was the last node on the path.

5.3 Control Management Mechanism

109

3. Successful completion of a last node (chart 4) in a path has an impact on the

completion of its superior path. When the last node finishes its execution, a

completion event is fired for the path (CompLD.1) and the path is marked

succeeded by policy (CompLR.2).

Control Chart 4. Successful Completion of Node

4. Successful completion of the main execution path (chart 5) triggers the successful

completion of the LRT (CompLR.3).

5. An exclusive scope succeeds (chart 5) when one of its exclusive paths succeed

(CompLR.4).

6. Concurrent paths are synchronised (chart 5) through a completion event that is

fired for an AND-scope (ComplD.2) or OR-scope (CompLD.3).

Chapter 5. Management Mechanism

110

Control Chart 5. Successful Completion of Path

7. A concurrent scope successfully completes (chart 6) when a completion event has

been fired for the scope and no failure event is raised for the scope (CompLR.5).

8. The failure of a non-vital last node (Chart 7) leads to successful completion of its

superior path in two cases: (1) if it is encapsulated by a vital path (CompLR.6), or

(2) if it is encapsulated by a non-vital path and no failure event was fired for the

path (CompLR.7).

5.3 Control Management Mechanism

111

Control Chart 6. Completion of a Concurrent Scope

Control Chart 7. Failure of non-Vital Node

Chapter 5. Management Mechanism

112

5.4 Failure-Handling Mechanism

COMPMOD applies a recursive method for propagating vital failure events through the

recursive hierarchical structure of LRT components. Propagation is applied in parallel

with policy-based actions in order to reach a consensus about the execution state of LRT

components and the LRT itself.

Within the context of the proposed hierarchical structure, the recursive failure propagation

mechanism entails a combination of three types of propagation method:

1. Bottom-up propagation originates from failure of a vital atomic node and

propagates up the hierarchy to its immediate superior path. If the failed atomic node

exists on the main execution path 𝑝 , the LRT fails.

2. Upwards recursive propagation originates from failure of a scope node by

repeating a bottom-up propagation to its immediate superior execution path in

recursive fashion until a non-vital component is reached in the hierarchy or until the

failure reaches the root of the hierarchy structure (𝑝).

3. Downwards recursive propagation originates from a failure of a scope node (vital

or non-vital) by repeating a top-down propagation to its immediate activated paths

until the propagation reaches all active atomic nodes within the failed scope’s sub-

hierarchy. This represents a mean of forcing failure/cancellation of concurrently

running nodes in a failed scope. Force fail only applies to concurrent scopes and in

5.4 Failure-Handling Mechanism

113

4. our model only applies to AND and OR scopes since a failed XOR is a result of a

failure of all its exclusive paths.

Failure and force-fail control charts (7-11) illustrate the failure and force-fail mechanism

linked to failure and dependencies and policies (Tables 4.5-4.8). In particular, charts 8

and 10 illustrate the main propagation mechanism implemented by COMPMOD. Control

charts include compensation mechanisms that are discussed and illustrated in chapter 6.

Failure propagation is always initiated by the failure of a vital (chart 8) atomic node, and

propagates recursively through vital component ancestors in the hierarchy structure to stop

when a non-vital ancestor component is reached or when the root of the hierarchy is

reached. As for Top-down propagation of failures, both vital and non-vital active

components are force-failed. If a vital failure propagates through the hierarchy structure of

the LRT and reaches the root of the hierarchy 𝑝 , the LRT fails.

Chapter 5. Management Mechanism

114

Control Chart 8. Failure of a Vital Node

The failure mechanism also handles failures of non-vital components. Failure of a non-

vital atomic node (chart 7, section 5.3.2) could fail its enclosing path if the enclosing path

was a non-vital path, and the node is the last node in the path, and all other nodes in the

path (if any13) have failed. Failure of a non-vital path (Chart 9) will only fail its enclosing

scope under two conditions: (1) it is an exclusive path (2) it has no alternative, i.e. it is the

last exclusive path in the scope.

13 If the path is atomic (i.e. contains one node), then the node is considered as the first

node and last node.

5.4 Failure-Handling Mechanism

115

Control Chart 9. Failure of non-vital Path

In the following subsections, the semantics of failure and force fail semantics are

discussed.

5.4.1 Failure Semantics

Failure semantics are formalized through failure dependencies (Table 5.6) and failure

policies (Table 5.7) and they are conceded as follows:

1- Failure events for atomic nodes are fired internally by the system. When a failure

event is fired for an atomic node, the event is assessed by failure policy (FailR.1)

and the node is marked as FAILED.

Chapter 5. Management Mechanism

116

2- Failure of a vital node triggers the propagation of the failure event to its superior

path and subsequently the superior path fails (FailR.2)

3- A failure event is fired for a non-vital path iff all its encapsulated nodes fail

(FailD.1), the failure event is assessed by (FailR.6) and the state of the path is

marked FAILED.

4- Failure of the main execution path triggers the failure of the LRT (FailR.3).

5- Failure of an exclusive path that has alternative initiates a compensation process

for the path. This event is assessed by the compensation policy (CompR.1) and is

explained in (Chapter 6, section 6.2.3).

6- Failure of an exclusive path that has no alternative triggers the failure of its

encapsulation scope (FailR.4).

7- Failure of a vital concurrent path propagates the failure event to its enclosing

scope (FailR.5).

8- A failure event is fired for a concurrent AND scope (FailD.2) if all its enclosing

concurrent paths fail to complete.

9- A failure event is fired for a concurrent OR scope (FailD.3) if all its enclosing

enabled concurrent paths fail to complete or the scope has been activated but none

of its enclosing paths has been enabled.

10- When a failure event is fired for a concurrent scope, if the scope has not been

failed as a result of bottom-up failure propagation from within the scope, the

scope is marked failed (FailR.7).

5.4 Failure-Handling Mechanism

117

Dep #

Dependency Component

FailD.1 𝑫 (𝒉)

(⋀ 𝒏 𝑳 𝒏 𝑨𝑰𝑳𝑬𝑫

)

Non-Vital path

FailD.2 𝑫 (𝑨 𝑫)
⋀ (𝒉 𝑨𝑰𝑳𝑬𝑫)

AND scope with
m paths

FailD.3 𝑫 (𝑶)
(⋀ (𝒉 𝑰 𝑬𝒏 𝒉 𝑨𝑰𝑳𝑬𝑫))
(𝑶 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 (⋀ 𝒉 𝑰 𝑬𝒏

 𝑨𝑳 𝑬))

OR scope with m
paths

Table 5.6 Failure Dependencies

Rule# Policy Component
FailR.1 ON “failure/cancellation event for atomic node”

DO fail(node)
Atomic node

FailR.2 ON fail(node)
IF node.superior.state=ACTIVATED and
 node.IsVital
DO fail(node.superior)

vital path
(bottom-up
propagation)

FailR.3 ON fail(path)
IF path=𝑝
DO fail(LRT)

LRT

FailR.4 ON fail(path)
IF ¬path.HasAlternative and path.IsExclusive
DO fail(path.superior)

Exclusive scope

FailR.5 ON fail(path)
IF path.IsVital=TRUE and
 Path.IsConcurrent
DO fail(path.superior)

concurrent scope
(bottom-up
propagation)

FailR.6 ON FailDep(path)
DO fail(path)

 non-vital path

FailR.7 ON FailDep(scope)
IF scope.state≠failed
DO fail(scope)

Concurrent scope

Table 5.7 Failure Policies

5.4.2 Force-Fail semantics

Force-fail is a counterpart for cancellation. As illustrated in chart 8, when a vital

concurrent path fails, its immediate outer scope fails. Force-fail dependencies and

policies force all active paths within a failed concurrent scope to cancel their executions,

and subsequently all active nodes on paths are forced to fail.

Chapter 5. Management Mechanism

118

Force-fail dependencies (Table 5.8) are defined between components and their immediate

superiors, such that failure of an activated component’s superior will force the component

to fail.

Dep # Dependency Component
FFailD.1 𝑫 (𝒏) 𝒏 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 𝒉

 𝑨𝑰𝑳𝑬𝑫
Where path=node.superior

Atomic
node/scope

FFailD.2 𝑫 (𝒉) 𝒉 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫
 𝑨𝑰𝑳𝑬𝑫

Where scope=path.superior

𝑝 𝑡 𝑝

FFailD.3 𝑫 () 𝑳 𝑻 𝑨𝑰𝑳𝑬𝑫 Main path 𝑝

Table 5.8 Force-fail Dependencies

Force-fail policies (Table 5.9) automate the propagation of Force-fail events (chart 10) in a

downwards recursive fashion through the hierarchy structure of the WF.

Rule# Policy Component
FFailR.1 ON FFailDep(node)

IF node.type=ATOMIC
DO abort(node)

Atomic node-
Propagation

FFailR.2 ON FFailDep(node)
IF node.type=SCOPE
DO fail(node)

scope -Propagation

FFailR.3 ON FFailDep(path)
DO fail(path)

Path- Propagation

FFailR.4 ON “cancellation event of LRT”
IF LRT.State=ACTIVATED
DO fail(LRT)

LRT

Table 5.9 Force-fail Policies

Force-fail propagation originates from a failure of concurrent scope, and triggers the

failure of all its encapsulated active components in the following recursive mechanism:

1- A force-fail event is fired for all activated paths within a scope if the superior

scope has failed (FFailD.2).

5.4 Failure-Handling Mechanism

119

2- A force-fail event of a path is assessed by (FFailR.3) policy and the path is

marked FAILED.

3- A force-fail event is fired for an activated node (atomic/scope) if its superior path

has failed (FFailD.1).

4- A fired Force-fail event of an atomic node is assessed by (FFail.R.1) policy and

the node is aborted.

5- A fired Force-fail event of a scope node is assessed by (FFailR.2) policy and

scope is failed.

Control Chart 10. Force-Fail Scope

Cancellation of the LRT by the end-user is supported by COMPMOD (Chart 11). When a

cancellation event is fired for the LRT, the event is assessed by the (FFailR.4) policy, and

the LRT is marked as failed. Failing the LRT triggers a force-fail event for the main

execution path (FFailD.3) which consequently leads to a force-fail event fired for the

Chapter 5. Management Mechanism

120

activated node on 𝑝 at the time the cancellation of LRT occurred. Following the force-

fail mechanism mentioned above, if the activated node is atomic, the node is aborted. If

the activated node is a scope, the activated components within the scope are force-failed in

a downwards recursive propagation fashion, following the mechanism illustrated in chart

10.

Control Chart 11. Force-Fail LRT

5.5 Examples

5.5.1 Control Flow Dependencies of OP Case Study

In section 4.4, we depicted the workflow representation and the transitional attributes of

our OP case study (Figure 4.5). In (Table 5.10), we define the control flow dependencies

for OP with respect to workflow semantics and transactional dependencies of

COMPMOD which have been discussed in the previous sections.

5.5 Examples

121

 ActDep ComLDep FailDep ForceFailDep

P0 OP.state=

ACTIVATED

scope1.State=SUCCEEDE

D scope1.State=FAILED

By propagation OP.state=FAILED

SALES po.State=

ACTIVATED

Internal event Internal event SALES.state=ACTIVATED

 po.state=FAILED

Scope1 SALES.State=

SUCCEEDED
(p1.state=SUCCEEDED

p1.state=FAILED)

(p2.state=SUCCEEDED

p2..state=FAILED)

(p3.state=SUCCEEDED
p3.state=FAILED)

p1.state=FAILED

p2..state=FAILED
p3.state=FAILED

scope1.state=ACTIVATED

 po.state=FAILED

p1 scope1.State=
ACTIVATED

CHARGE.State=

SUCCEEDED
CHARGE.State= FAILED

By propagation p1.state=ACTIVATED

 scope1.state=FAILED

p2 scope1.State=

ACTIVATED

OUTSOURCE _ANALYSIS

.State=SUCCEEDED
OUTSOURCE

_ANALYSIS.State=
FAILED

OUTSOURCE

_ANALYSIS.State=

FAILED

p2..state=ACTIVATED

 scope1.state=FAILED

p3 scope1.State=

ACTIVATED

CHECK_GOODS.State=

SUCCEEDED
CHECK_GOODS.State=

FAILED

By propagation p3.state=ACTIVATED

 scope1.state=FAILED

CHARGE p1.State=

ACTIVATED

Internal event Internal event CHARGE.state=

ACTIVATED
p1.state=FAILED

OUTSOURCE

_ANALYSIS

p2.State=

ACTIVATED

Internal event Internal event OUTSOURCE _ANALYSIS

.state=ACTIVATED
p2..state=FAILED

DELIVERY p2.State=
ACTIVATED

Internal event Internal event DELIVERY.state=

ACTIVATED

p2..state=FAILED

CHECK_GOODS

DELIVERY.State

= SUCCEEDED

Internal event Internal event CHECK_GOODS.state=

ACTIVATED
p3.state=FAILED

Table 5.10 Control flow dependencies of OP case study

5.5.2 E-Booking Example

We demonstrate our management and failure handling mechanism on an E-booking

example as depicted in Figure 5.3. This example illustrates how an LRT can succeed in

the case of non-vital node failures. In this scenario, there is a need to book a flight, a

hotel room and a car for a specific period as received by the BookingOrder. It is

necessary to find a flight booking and a hotel room for the requested dates, and thus the

nodes Flight and Hotel are assigned as vital nodes. It is desirable for the MakeBookings

scope that a car rental is booked for the same dates, but not necessary. In other words, if

Chapter 5. Management Mechanism

122

car rental is not available, the MakeBooking is considered to have succeeded from a

business point of view, and hence it is assigned as a non-vital node. The successful

completion of the nodes BookingOrder, MakeBookings, and Payment are necessary for

the successful completion of the E-booking LRT and thus they are all assigned as vital by

specification. Note that p1 and p2 in MakeBookings scope are vital, and p3 is non-vital by

evaluation. The main execution path encloses three nodes:

 p0.nodeList=[BookingOrder,MakeBookings,Payment].

Figure 5.3 E-booking Example

Activation of the LRT (ActR.1) triggers an activation event for p0 (ActD.1). Activation of

a path triggers the activation of the first node BookingOrder (ActD.2). The system waits

for the BookingOrder to finish its execution (Control Chart 3). We assume that a

completion event has been fired for the node and the BookingOrder is marked

SUCCEEDED (CompLR.1). Successful completion of BookingOrder (Chart 4) activates

the MakeBooking scope (ActD.3) since BookingOrder is not the last node on p0.

5.5 Examples

123

Activation of MakeBooking, fires activation events (ActD.4) for p1,p2, and p3

encapsulated by MakeBooking and they are all activated by (ActR.3). Subsequently and

in the same manner illustrated above, the first nodes on the concurrent paths are

activated; Flight, Hotel and Car are executed concurrently. Assume that Flight

succeeded and Hotel succeeded and the system is waiting for the Car node to finish its

execution. Note that p1 and p2 has succeeded by (CompLR.2). To demonstrate how the

completion and successful completion of concurrent scopes are dealt with in the case of

non-vital failures, we assume that Car node fails to complete. Following Chart 7, failure

of the non-vital Car node fires a failure event for p3 (FailD.1) and thus p3 fails (FailR.7).

Following chart 9, failure of p3 fires a completion event for MakeBookings since it is the

last path to complete, and hence CompLDep(MakeBookings)=True. Following chart 6,

MakeBookings has not failed, since all its vital components have succeeded and there is

no failure event fired for the path since p1 and p2 has succeeded; hence the

MakingBookings is succeeded by the completion policy (CompLR.5). Successful

completion of MakeBookings activates Payment. If we assume that Payment succeeds,

then a completion event is fired for p0 (CompLD.1) and policy (CompLR.2) succeeds p0.

Following chart 5, successful completion of the main execution path succeeds the LRT

by (CompLR.3).

5.5.3 Nested LRT Sample

To further illustrate the propagation mechanism, we will consider the sample LRT1

presented in Figure 5.4.

Chapter 5. Management Mechanism

124

Figure 5.4 An execution instance of LRT1 in Figure 4.2

Assume an execution instance with the following states of its components: n1, n2, scope1

and scope2 have succeeded, and 𝑠𝑐𝑜𝑝𝑒 is activated. 𝑛 is a vital node and has failed to

complete. Table 5.11 shows 𝑠𝑐𝑜𝑝𝑒 ’s sub hierarchy tree attribute values and execution

states when the node 𝑛 failure event has been fired, and we show how the failure

propagation algorithm is employed.

Component Type vital Immediate
superior

Has
Alternative

Execution
state

𝑠𝑐𝑜𝑝𝑒 AND
scope

✓ 𝑝 - activated

𝑠𝑐𝑜𝑝𝑒 𝑝 path ✓ 𝑠𝑐𝑜𝑝𝑒 activated

𝑠𝑐𝑜𝑝𝑒 𝑝 path 𝑠𝑐𝑜𝑝𝑒 succeeded
𝑠𝑐𝑜𝑝𝑒 𝑝 path ✓ 𝑠𝑐𝑜𝑝𝑒 activated

𝑛 node 𝑠𝑐𝑜𝑝𝑒 𝑝 - succeeded
𝑛 node ✓ 𝑠𝑐𝑜𝑝𝑒 𝑝 - failed

𝑠𝑐𝑜𝑝𝑒 AND
scope

✓ 𝑠𝑐𝑜𝑝𝑒 𝑝 - activated

𝑠𝑐𝑜𝑝𝑒 𝑝 path ✓ 𝑠𝑐𝑜𝑝𝑒 activated

𝑠𝑐𝑜𝑝𝑒 𝑝 path ✓ 𝑠𝑐𝑜𝑝𝑒 activated

𝑠𝑐𝑜𝑝𝑒 𝑝 path ✓ 𝑠𝑐𝑜𝑝𝑒 succeeded

𝑛 node ✓ 𝑠𝑐𝑜𝑝𝑒 𝑝 - activated

𝑛 node ✓ 𝑠𝑐𝑜𝑝𝑒 𝑝 - activated

𝑛 node ✓ 𝑠𝑐𝑜𝑝𝑒 𝑝 - succeeded

Table 5.11 Execution Instances of

5.5 Examples

125

Following the propagation mechanism in (Charts 8 and 10) and applying the propagation

mechanism on scope3’s sub hierarchy tree (Figure 5.5), failure of 𝑛 will fail its superior

path 𝑠𝑐𝑜𝑝𝑒 𝑝 . This is not the main execution path, and does not have an alternative,

since it is a concurrent. 𝑠𝑐𝑜𝑝𝑒 𝑝 is vital by evaluation, since it encapsulates vital node

𝑛 . Therefore, the immediate scope of 𝑠𝑐𝑜𝑝𝑒 𝑝 which is 𝑠𝑐𝑜𝑝𝑒 fails 𝑠𝑐𝑜𝑝𝑒 . is vital

by specification, hence two actions take place: (a) the failure is propagated recursively one

level up in the hierarchy to path 𝑝 . (b) Force fail is recursively propagated in top-down

order to cancel all activated components encapsulated by 𝑠𝑐𝑜𝑝𝑒 . Failure of 𝑝 will fail

LRT1 (FailR.3). Failure of 𝑠𝑐𝑜𝑝𝑒 will force fail all its activated paths. At this point of

execution, 𝑠𝑐𝑜𝑝𝑒 𝑝 has already failed and 𝑠𝑐𝑜𝑝𝑒 𝑝 has succeeded while 𝑠𝑐𝑜𝑝𝑒 𝑝 is

still activated and therefore is forced to fail. Force failing a path fails the activated node in

that path. Therefore, activated 𝑠𝑐𝑜𝑝𝑒 is forced to fail. 𝑠𝑐𝑜𝑝𝑒 is a scope node and

hence the force fail mechanism is recursively repeated one level down in the hierarchy to

force fail 𝑠𝑐𝑜𝑝𝑒 ’s activated components in same manner as scope3’s activated

components were forced to fail.

Chapter 5. Management Mechanism

126

Figure 5.5 Scope3’s Sub-Hierarchy Tree

In the above example, failure of a vital node 𝑠𝑐𝑜𝑝𝑒 on 𝑝 caused LRT1 to fail. Our

management/compensation model applies a reliable mechanism that controls failure of the

LRT in a designer specified order that reflects the business logic of the transaction. In case

of force failing a scope that has un-activated components, these components can never

activate, since their enclosing scope state is failed, ensuring the correctness of the model

and avoiding activation of paths in failed scopes.

127

Chapter 6

Compensation Mechanism

6.1 Introduction

The COMPMOD model supports two types of compensation modes:

Partial compensation: where some compensation actions take place while the LRT is

executing in its normal mode, i.e. the LRT state is activated. Partial compensation is

applied to nodes, paths, and scopes in tolerance with failures and it primarily reflects WF

semantics.

Comprehensive Compensation: when an explicit consensus is reached about the failure

of the LRT, the LRT starts its global compensation applied to all successfully completed

atomic nodes in a customized-order that is defined by the business process designer at

Chapter 6. Compensation Mechanism

128

design time. Comprehensive compensation mainly reflects the compensation logic of the

business process.

In this chapter, we demonstrate our compensation mechanisms and show how they are

automated through formal definitions of dependencies and compensation policies.

6.2 Partial Compensation

Partial compensation is triggered by failure of an exclusive path that has an alternative.

To illustrate our partial compensation semantics, we consider sample LRT2 in (Figure

6.1).

Exclusive scopes encapsulate paths that alternate each other in execution such that only

one path is allowed to succeed (e.g. paths p1, p2, and p3 in scope2). If an activated path

has failed to successfully complete, which is mainly triggered by a failure of a vital node

on the path or by failure of all its encapsulated nodes, then all its succeeded nodes (if any)

are compensated. For example, assume that p1 in scope2 is activated and n3 and scope2.1

have succeeded. We further assume that n11 is vital but has failed, this will fail and

compensate p1 and consequently scope2.1 and n3 are compensated. Only when the failed

path has completed its compensation actions is an activation event fired for its alternative

path (ActD.6 and Charts 8 and 9 in Chapter 5). E.g. only when p1 in scope2 has finished

its compensation, p2 can be activated.

6.2 Partial Compensation

129

Figure 6.1 Sample LRT2

When compensating a path, the current state of its encapsulated nodes at the time the

failure has happened is important in deciding on the compensating actions to be

performed on these nodes, so we consider the following possible situations:

1. The failed exclusive path could have nodes on the path that were succeeded,

failed or not-activated (i.e. the failure occurred before the node has been

activated).

2. Nodes could be scopes, and hence, if the scope was activated and some tasks had

been succeeded within the scope, then all succeeded work has to be compensated.

Chapter 6. Compensation Mechanism

130

3. The path is an atomic path that encapsulates a single node, and its failure has

caused failure of the path where the node may be atomic or scope.

We adopt two widely used terminologies in Transaction Processing; Forward

Compensation and Backward Compensation and give them a precise definition in

COMPMOD.

Forward compensation14 is used to refer to the compensation process of an exclusive

path that has an alternative but failed to complete. Forward compensation starts by

compensating the last node on the path, and completes when the first node on that path

has completed its compensating actions. For example, in case p1 in scope2 has failed, then

its compensation is performed in forward order.

Backward compensation is used to refer to the compensation process of a scope node

that has been previously succeeded or failed (i.e. some partial work could have been

succeeded within the scope) and is formally defined for scopes that are contained within

potentially compensable paths. Backward compensation of a scope starts by

compensating all its encapsulated paths concurrently in backward order. The backward

compensation of each path is processed in the same manner as in forward order: that is,

starting from last node and cascading compensation events along the nodes on the path

until the first node on the path has completed its compensating actions. For example, if

14 We adopt the term from the sagas.

6.2 Partial Compensation

131

we assume that scope2.1 has succeeded but its enclosing path p1 is compensated, then

compensation of scope2.1 is performed in backward order.

A potentially compensable path is a path that can possibly, in case of tolerable failures

and during the normal execution mode of the LRT, have some compensating actions

applied to it. Hence, a forward compensable path (e.g. p1 in scope2) and a backward

compensable path (a path within a backward compensable scope like p1 in scope2.1) are

both potentially compensable paths. Analogously, a node is potentially compensable if it

is encapsulated with a potentially compensable path. Thus, in COMPMOD, all potentially

compensable components are defined with compensation dependencies.

However, compensations of nodes on a compensating path are always performed in

reverse order of their activations. Therefore, whether a path is in forward or backward

compensation mode, the order by which nodes are compensated is always in reverse

order of their activations.

Based on the above discussion, we provide in the next sections a detailed description of

partial compensation semantics.

6.2.1 Compensational Attributes

In order to define compensation dependencies, we provide an essential compensational

attribute for LRT components, IsCompensable, and its value is assessed as follows:

Chapter 6. Compensation Mechanism

132

1- The main execution path is not compensable since if it fails then its compensation

is performed in customized order.

 𝒉 𝒉 𝑰 𝑪 𝒏 𝑨𝑳 𝑬

2- A path IsCompensable iff the path has an alternative.

 𝒉 𝒉 𝑨 𝒏 𝑻 𝑬 𝒉 𝑰 𝑪 𝒏 𝑻 𝑬

3- A scope node IsCompensable iff its superior path IsCompensable

 𝑰 𝑪 𝒏 𝑻 𝑬

 𝑰 𝑪 𝒏

4- A path that has no alternative IsCompensable iff its superior scope

IsCompensable. This is the case of concurrent paths, and the last exclusive path in

an exclusive scope.

 𝑰 𝑪 𝒏 𝑻 𝑬 𝑰𝒏 𝒉 𝑨 𝒏
 𝑰𝒏 𝑰 𝑪 𝒏 𝑻 𝑬

To further illustrate the compensability attribute, we consider the sample LRT2 in figure

6.1. In LRT2, scope1 and its encapsulated path are not compensable, since the scope is not

encapsulated by a compensable path (p0.IsCompensable=FALSE). Paths p1 and p2 in

scope2 are compensable since they both have alternatives. Scope2.1 and scope2.2 and their

encapsulated paths are compensable since both scopes are encapsulated by compensable

paths. Note that p1 in scope2.2 is compensable for another reason: it is a path with an

alternative. Path p3 in scope2 is not compensable hence its failure will not trigger

compensation activity.

6.2 Partial Compensation

133

6.2.2 Dependencies Semantics

The general behavioral dependency in Def. 4.3 is used for defining compensation

dependencies, 𝑫ep(𝒏 𝒏 j):= 𝑪 𝒏 (𝒏 𝒏 .), to indicate that

there exists a compensation dependency 𝒏 𝒏 𝑪 𝑪 𝒏 𝒏 such that a

state transition in componenti can fire a compensation event for componentj.

Compensation intuitively means performing compensating activities that undo the effects

of a succeeded atomic node. A succeeded atomic node could only exist on a succeeded or

failed15 path and hence not-activated paths or compensated16 paths could not possibly

have succeeded nodes. A succeeded and failed execution path may only be encapsulated

by succeeded or failed scopes since a not-activated scope encapsulates only not-activated

paths.

Therefore, a component is a compensation candidate iff it is:

1- Succeeded atomic node

2- Succeeded or failed compensation path

3- Succeeded or failed scope node.

In our compensation model, compensation dependencies are defined for all compensable

components (i.e. component.isCompensable=TRUE) and when satisfied, compensation

events are fired but only components that are candidate for compensation actions are

compensated.

15

 A failed path could be partially succeeded
16

 Within an exclusive scope

Chapter 6. Compensation Mechanism

134

Compensation semantics for execution paths states that when a path commences its

compensation, a compensation event is fired for the last node on the path, and

compensation events and actions are cascaded in reverse order until the first node is

compensated such that the preceding node in a sequence can commence its compensation

only after the succeeding node on the same path has finished its compensation.

To enforce the reverse order of compensations along compensating paths, the model

explores all nodes existing on the path (i.e. all compensation events of nodes are

assessed) but only compensates candidate nodes. Non-candidate nodes are explored but

skipped. So mainly exploring a non-candidate is required just to enforce the reverse

sequence of compensations, but without performing any compensation actions in the

node.

Compensation semantics for scope nodes states that when a scope commences its

compensation, a compensation event is fired for all its enclosed paths but only candidate

paths are compensated. Non-candidate paths are ignored.

Based on the above argument, when a compensation event is fired for a component that is

not a candidate for compensation action, the model corresponds according to the

following rules:

6.2 Partial Compensation

135

CR1. If the component was an atomic node that has not been succeeded (failed, not-

activated, or aborted) or it was a scope node that is not activated, the node is

skipped (i.e. its state is marked as SKIPPED).

Def. 6.1: (skipping a node on a compensating path)
𝑪 𝑫 () 𝑻 𝑬 𝑪𝑪𝑬𝑬𝑫𝑬𝑫

 ()
𝑪 𝑫 () 𝑻 𝑬 𝑶𝑻 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫

 ()

CR2. If the component was a not-activated or previously compensated path, no action is

taken for its compensation event; hence the state of the path remains as its current

marked state.

6.2.2.1 Compensation Dependencies

A partial compensation dependency is defined as follows:

1- Between a node and its successor (if any) iff its superior path IsCompensable.

2- Between a path and its superior scope iff and only iff the scope IsCompensable.

3- Between the last node and its encapsulating path iff the path IsCompensable.

Therefore, compensation dependencies are defined for nodes encapsulated by a

compensable path and for execution paths that are encapsulated by a compensable scope

(Table 6.1) such that when a compensation event is fired for a component, the event is

assessed by compensation policies, and if there are possible compensation actions to be

performed on the component, then the component commence compensation and its state

is marked as COMPENSATING. As mentioned earlier, partial compensation is always

Chapter 6. Compensation Mechanism

136

triggered by the failure of an exclusive path with an alternative and its compensation is

mainly dependent on its own failure. Hence, a path that has an alternative is not defined

with compensation dependency; instead, its compensation is triggered by a compensation

policy.

Dep # Dependency Component
CompD.1 𝑪 𝑫 () 𝑷 𝒉 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑰

Last node on a
compensable path

CompD.2 𝑪 𝑫 (𝒏)
superior 𝑪 𝒏 𝒏

⋀ (𝒏 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫 𝒏 𝑰𝑷𝑷𝑬𝑫)

A node that has a
successor on a
compensable path
node2=successor(no
de1)

CompD.3 𝑪 𝑫 (𝒉) 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑰

Path within a
compensable scope

Table 6.1 Compensation Dependencies

A compensation event is fired for the last node on a compensable path when the path has

commenced its compensation (CompD.1) and is fired for a path when its superior scope

has commenced its compensation (CompD.3). (CompD.2) enforces the reverse order of

compensation activation such that a compensation event is fired for a node if its successor

on the path has been compensated or skipped.

6.2.2.2 Compensation Completion Dependencies

Compensation completion dependencies are defined for compensable paths and scopes to

signal the end of their compensation process (Table 6.2) such that when fired, they are

marked by a completion policy as COMPENSATED.

For atomic nodes, compensation completion is triggered by an internal event for the

node. It is an assumption of the model that compensation completion of the node is

6.2 Partial Compensation

137

guaranteed to succeed, and thus, when a compensation completion event is fired for an

atomic node, it is marked as COMPENSATED.

A compensating path ends its compensation process when the first node in the path has

either compensated or skipped (CpCompLD.1).

To reach a consensus about the compensation completion of a scope, we have to evaluate

all possible states of its encapsulated paths at the time the scope has SUCCEEDED or

FAILED.

From Chapter 5, an exclusive scope succeeds if an exclusive path succeeds, thus the

scope completes with one succeeded path in addition to one or more compensated and/or

not-activated paths depending on rank of the succeeded path in the scope. And an

exclusive scope fails when the last path fails; hence, the scope completes with one failed

path and one or more compensated paths, depending on the number of paths within the

scope. From CR2, we may conclude that a compensable exclusive scope always has only

one compensation candidate path, and hence the scope is treated as a single path, and

consequently the compensation completion of its candidate path signals the compensation

completion of the scope.

Compensation of concurrent paths is executed concurrently but in reverse order of

activations of their nodes. Hence, their compensation completion has to be synchronized

and this is formalized through compensation completion dependency. A failed or

succeeded concurrent scope may encapsulate only succeeded and/or failed paths in case

of AND-scope, and succeeded and/or failed and/or not-activated paths in case of OR-

Chapter 6. Compensation Mechanism

138

scope. We say that a concurrent path completes its compensation when all paths are

either compensated or not-activated (CpCompLD.2) and we define the same dependency

for both AND and OR scopes.

Dep # Dependency Component
CpCompLD.1 𝑪 𝑪 𝑳𝑫 (𝒉)

(𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫)
 𝑰𝑷𝑷𝑬𝑫)

Compensable Path

CpCompLD.2 𝑪 𝑪 𝑳𝑫 () 𝒏 𝒏

(⋀ (𝒉𝑳 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫 𝒉𝑳

 𝑶𝑻 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫))

Compensable
concurrent scope
with m paths

Table 6.2 Compensation Completion Dependencies

6.2.3 Partial Compensation Mechanism

Partial compensation is automated through compensation policies (Table 6.3) and

compensation completion policies (Table 6.4). The automation process is illustrated

through Control charts (12-15). Note that we add a consistency condition

(LRT.state=ACTIVATED) to all compensation policies to differentiate between the partial

compensation mode and comprehensive compensation mode

(LRT.state=COMPENSATING), such that compensation events are handled reliably and

in context with the correct mode of compensation.

6.2 Partial Compensation

139

Rule# Compensation Policies Component
CompR.1 ON fail(path)

IF path.hasAlternative and
 node.superior.state=ACTIVATED

 DO compensate(path)

Exclusive path
with alternative

CompR.2 ON CompDep(path)
IF LRT.State=ACTIVATED and (path.state=SUCCEEDED
 or path.state=FAILED)
DO compensate(path)

Compensable path
previously
succeeded or failed

CompR.3 ON CompDep(node)
IF LRT.State=ACTIVATED and node.Type=ATOMIC and
 node.State=SUCCEEDED
DO compensate(node)

succeeded Atomic
node

CompR.4 ON CompDep(node)
IF LRT.State=ACTIVATED and node.Type=ATOMIC and
 (node.State=FAILED or node.state=NOT-ACTIVATED
 Or nodeState=ABORTED)
DO skip(node)

Non succeeded
atomic node

CompR.5 ON CompDep(node)
IF LRT.State=ACTIVATED and node.Type=SCOPE and
 (node.State=SUCCEEDED or node.state=FAILED)
DO compensate(node)

Succeeded or failed
scope

CompR.6 ON CompDep(node)
IF LRT.State=ACTIVATED and node.Type=SCOPE and
 node.state=NOT-ACTIVATED
DO skip(node)

Not activated
scope

Table 6.3 Compensation Policies

Rule# Compensation Policies Component
CpCompLR.1 ON “internal compensation completion event of atomic node”

IF LRT.State=ACTIVATED
DO compensated(node)

Atomic node

CpCompLR.2 ON CpCompLDep(path)
DO compensated(path)

Path

CpCompLR.3 ON CpCompLDep(node)
IF node.Type=SCOPE and node.state≠SKIPPED
DO compensated(node)

Concurrent Scope

CpCompLR.4 ON compensated(path)
IF path.IsExclusive and
 Path.superior.state=compensating
DO compensated(path.superior)

Exclusive path

Table 6.4 Compensation Completion Policies

The partial compensation mechanism is automated as follows:

1- When a failure event is fired for an exclusive path with an alternative, the event is

assessed by (CompR.1) and the path is marked COMPENSATING.

Chapter 6. Compensation Mechanism

140

2- A compensation event fired for a compensable path is assessed by (CompR.2) and

the path is marked COMEPSNATING.

3- When a path commences its compensation, a compensation event is fired for the

last node in the path (CompD.1).

Control Chart 12. Compensation of Path

4- When a compensation event is fired for an atomic node, if the node has

succeeded, the event is assessed by (CompR.3) and the nodes start

COMPENSATING.

5- When a compensation event is fired for an atomic node, if the node that has not

been succeeded, the event is assessed by (CompR.4) and the node is SKIPPED.

6- When an internal compensation completion event is fired for an atomic node, the

node is marked as COMPENSTAED (CpCompLR.1).

6.2 Partial Compensation

141

7- A compensation event fired for a non-activated scope is assessed by (CompR.6)

and the scope is SKIPPED.

8- A compensation event fired for a SUCCEEDED or FAILED scope is assessed by

(CompR.5) and the scope starts compensating.

9- When a scope commences its compensation, a compensation event is fired for all

its encapsulated paths (CompD.3) and control goes to step 2.

Control Chart 13. Compensation of node

Chapter 6. Compensation Mechanism

142

10- When a node is COMPENSATED or SKIPPED, if the node was the first node in the

path, a compensation completion event is fired for the path (CpCompLD.1) and

the path is marked compensated by (CpCompLR.2).

11- If a COMPENSATED or SKIPPED node has a predecessor node, a compensation event

is fired for the preceding node (CompD.2) and control goes to step 4 or 5.

Control Chart 14. Compensation Completion or Skipping of a node

12- When a compensation completion event is fired for an exclusive path within an

activated exclusive scope, an activation event is fired for the next alternative path

(ActD.6)17 and the node is activated by activation policy (ActR.3)18.

17

 Table 5.1, Chapter 5.
18

 Table 5.1, Chapter 5.

6.2 Partial Compensation

143

13- When a compensation completion event is fired for an exclusive path within a

compensating exclusive scope, the scope is marked COMPENSATED by Policy

(CpCompLR.4).

14- When a compensation completion event is fired for a concurrent scope

(CpCompLD.2), the scope is marked compensated by policy (CpCompLR.3).

Control Chart 15. Compensation Completion of a Path

6.2.4 Example

For further illustration of the mechanism, we assume different failure scenarios for path

p1 in scope2 (Figure 6.1), and we apply partial compensation semantics on each scenario

and demonstrate the state of all components before and after compensation is applied.

Chapter 6. Compensation Mechanism

144

Figure 6.2 A caption of scope2.p1 in sample LRT2

We assume the following failure scenarios:

Scenario1: n3 fails and hence p1 fails by propagation, and hence all other components are

not activated.

Scenario2: n3 succeeds, n7 is activated but n6 fails and thus scope2.1.p1 fails by

propagation. n6 fails scope2.1.p1 and scope2.1 by propagation. Failure scope2.1 force fails

scope2.1.p2 and hence n7 if forced to fail (aborted). Failure of vital scope2.1 fails p1 by

propagation and n11 remains not activated

Scenario3: n3, n6 succeeds, and non-vital n7 fails which fails scope2.1.p2 by FailR.7 but

scope2.1 succeeds by CompLR.5. n11 vital but fails and thus p1 fails by propagation.

The current execution states (w.r.t different scenarios) of scope2.p1’s encapsulated

components at the time p1 fails are represented in (Table 6.5).

S n3 Scop2.1
p1

n6 Scop2.1
p2

n7 scope2.1 n11

1 FAILED NOT-
ACTIVATED

NOT-
ACTIVATED

NOT-
ACTIVATED

NOT-
ACTIVATED

NOT-
ACTIVATED

NOT-
ACTIVATED

2 SUCCEEDED FAILED FAILED FAILED ABORTED FAILD NOT-
ACTIVATED

3 SUCCEEDED SUCCEEDED SUCCEEDED FAILED FAILED SUCCEEDS FAILED

Table 6.5 Current Execution State Instances of failed scope2.p1 in figure 6.2

6.2 Partial Compensation

145

In (Table 6.6), we show the current execution states of the components after applying

partial compensation to scope2.p1 w.r.t different failure scenarios. Note that failure of

scope2.p1 triggers a compensation of the path by policy CompR.1.

In scenario 1: n11 is not-activated, and thus is SKIPPED by policy CompR.4. Scope2.1 is not-

activated and thus skipped by CompR.6. p1 and p2 are paths within a skipped scope hence no

compensation dependency is fired for them, and hence all scope2.1’s encapsulated components

states remain unchanged. Note that scope2.1 can never be fired with compensation completion

dependency, since it can only be evaluated for compensating scopes (CpCompLD.2). n3 has failed

and thus skipped after compensation.

In scenario 2: scope2.1 has failed hence it is explored by CompR.5. Compensating scope2.1 fires

compensation events for p1 and p2 which both have failed and hence explored by policy

CompR.2. n7 has been aborted and n6 has been failed and hence they are both skipped which

consequently triggers a compensation completion event for both p1 and p2. Marking p1 and p2 as

compensated triggers a compensation completion event for scope2.1 (CpCompLD.2) and hence the

scope is COMPENSATED.

In scenario 3, Scope2.1 has succeeded and thus it is explored in the following manner:

both its paths p1 and p2 start compensating, n6 and n7 are explored because they are the

last nodes on the paths, n6 is compensated (CompR.3) and n7 is skipped. Subsequently p1,

p2, and their scope2.1 are all marked COMPENSATED by compensation completion events

and policies. .

Chapter 6. Compensation Mechanism

146

S n3 Scop2.1
p1

n6 Scop2.1
p2

n7 scope2.1 n11

1 SKIPPED NOT-
ACTIVATED

NOT-
ACTIVATED

NOT-
ACTIVATED

NOT-
ACTIVATE
D

SKIPPED SKIPPED

2 COMPENSATE
D

COMPENSATE
D

SKIPPED COMPENSATE
D

SKIPPED COMPENSATE
D

SKEPPE
D

3 COMPENSATE
D

COMPENSATE
D

COMPENSATE
D

COMPENSATE
D

SKIPPED COMPENSATE
D

SKIPPED

Table 6.6 Current Execution State Instances of compensated scope2.p1 in figure 6.2

6.3 Comprehensive Compensation

We have demonstrated in section 6.3 the mechanism for partial compensations which

takes place while the LRT is still activated and for which failures are tolerable and does

not lead to a global failure of the transaction. Some failure events lead to global failure of

the transactions, as discussed in the failure handling mechanism in Chapter 5. These

failures are mainly triggered by a failure of a vital node that is preceded by a hierarchy of

vital ancestor components towards the top of the hierarchy, such that the failure

propagates up the hierarchy structure and reaches the main execution path and

consequently the transaction globally fails.

From a business point of view, a failed transaction means that it has failed to achieve its

expected outcome, however some tasks could have succeeded but their effects are no

longer required, since the transaction has failed. From the reliability and consistency of

transaction’s point of view, these successful tasks should be compensated and their

effects should be undone to guarantee the consistency of all systems involved in the

transaction. The question arising is how to apply compensations and in which order. As

6.3 Comprehensive Compensation

147

we have discussed in Chapter 1, strict global backward recovery restricts business

process designers from freely expressing compensation logic in an arbitrary manner and

as required by the business logic of the process.

The COMPMOD model supports a customized-compensation method that provides

transaction designers with the flexibility of expressing their business process logic.

Compensation logic can then be mapped onto the business process in a very flexible way

to meet business needs. The designer is allowed to specify compensation patterns on a

subset or subsets of atomic nodes (component services) of an LRT. A compensation

pattern decides the order by which the specified services are compensated. Services that

are not involved in any compensation pattern are compensated concurrently. This will

increase the performance of the system in terms of time spent on the compensation

process. Assignment of compensation patterns is restricted by validity rules to avoid

deadlocks and violation of logic integrity. The general mechanism of comprehensive

compensations guarantees the following:

1- Each atomic node in the LRT is traversed.

2- Each succeeded atomic node in the LRT is compensated.

3- If there are customized compensation patterns, then the order of each pattern is

enforced.

4- Achieving (1-3) guarantees an explicit compensation completion state of the

transaction (LRT.state=COMPENSATED).

Chapter 6. Compensation Mechanism

148

Customized compensations are formalized through customized compensation

dependencies, and are automated through customized compensation policies. The

formalism embeds a traversing mechanism that ensures navigation of all atomic nodes in

the transaction. In the following subsections we demonstrate the method.

6.3.1 Customized Compensation Dependency Graph

The customized compensation control flow is represented in COMPMOD as a directed

acyclic dependency graph, where vertices in the graph represent atomic nodes, and edges

in the graph represent compensation dependencies. In order to achieve an acyclic

dependency graph, we provide a method for defining customized dependency patterns

that are cycle free, such that only valid dependencies are allowed. The motivation for the

graph to be acyclic is that this ensures that the mechanism is deadlock free by design.

A customized compensation dependency is denoted as 𝒏 𝑪𝑪𝑫 𝒏 for any

two atomic nodes 𝑛𝑜𝑑𝑒 , 𝑛𝑜𝑑𝑒 , where NODES is the set of all nodes in LRT

and is read as “there exists a customized compensation dependency from 𝑛𝑜𝑑𝑒 to 𝑛𝑜𝑑𝑒

such that 𝑛𝑜𝑑𝑒 can be compensated only after 𝑛𝑜𝑑𝑒 has been visited in the traversing

graph”. Therefore, it is convenient to think of 𝑛𝑜𝑑𝑒 as the source of the dependency and

𝑛𝑜𝑑𝑒 as the target of the dependency. To define a compensation dependency, a source

node and a target node are assigned from the set of LRT atomic nodes, provided that the

dependency is valid.

6.3 Comprehensive Compensation

149

A compensation pattern is formed when two or more nodes are associated through

customized compensation dependencies. Figure 6.3 shows an LRT-WF schema for a

sample LRT3 with allocated compensation dependencies. For example, the dotted arrow

from n3 to n1 states that n3 is the source node and n1 is the target node. Note that

customized compensations in Figure 6.3 are assigned arbitrarily in the sense that it can be

assigned between nodes on different paths, e.g. n5 and n3 or between nodes in different

scopes, e.g. n8 and n6. The motivation behind these arbitrary assignments is principally,

the business logic of the process. E.g. update inventory should be compensated after

shipping goods is compensated where both activities may exist in different scopes.

Figure 6.3: A Sample LRT3 with customized compensation dependencies

Chapter 6. Compensation Mechanism

150

The dependency graph is represented by the pair (𝑬) where

 𝒏 𝒏 𝑶𝑫𝑬 𝒏 𝒏 𝒚 𝑨𝑻𝑶𝑴𝑰𝑪 is the set of all atomic

nodes in the LRT, and

 𝑬 {(𝒏 𝒏)|𝒏 𝒏 𝒏 𝒏 𝑪𝑪𝑫 𝒏 𝒉

is a binary relation on V representing customized compensation dependencies, where a

pair (𝒏 𝒏) designates that there is a directed edge in the dependency graph

from 𝑛𝑜𝑑𝑒 to 𝑛𝑜𝑑𝑒 and that 𝑛𝑜𝑑𝑒 is compensationally dependent on 𝑛𝑜𝑑𝑒 .

A node in G is isolated if it has no edges incident from it or incident to it. In the

dependency graph, a node is isolated if it is not part of any compensation dependency.

We define 𝑫 𝒏 𝒏 𝒏 (𝒏 𝒏) 𝑬 𝒉 𝒏

𝒏 𝒏 𝒏 to be the set of all isolated nodes in G.

A node in the dependency graph is a Root if there are no edges incident to it. In other

words, a node is a root if it is not a target in a customized compensation dependency. We

define 𝑻 𝒏 𝒏 𝒏 (𝒏 𝒏) 𝑬 𝒉 𝒏

𝒏 to be the set of all root nodes. Note that isolated nodes are also root nodes, since

an isolated node has no edges incident to it, that is 𝑫 𝑻.

A node in G is a source root node if it has at least one edge incident from it and has zero

edges incident to it. A source root node can be a source node of one or more

compensation dependencies, but it is not a target node in any compensation dependency.

Any source root node is in RT since it has no edges incident to it, but it is not in D since

6.3 Comprehensive Compensation

151

it has at least one edge incident from it. We define

 𝒏 𝒏 𝒏 𝒏 𝑫 to be the set of all source root nodes in G.

A node in G is a target node if it has at least one edge incident to it. We define 𝑻

 𝒏 𝒏 𝒏 (𝒏 𝒏) 𝑬 𝒉 𝒏 𝒏 to be the set of

all target nodes in V.

A node in G is a terminal node if it has no edges incident from it and has at least one edge

incident to it. A terminal node can be a target node in one or more compensation

dependencies, but not a source in any compensation dependency. We define

𝑻 𝒏 𝒏 𝒏 (𝒏 𝒏) 𝑬 𝒉 𝒏

𝒏 𝒏 (𝒏 𝒏) 𝑬 𝒉 𝒏 𝒏 to be the set of all terminal

nodes in G.

The dependency graph of the LRT3 in Figure 6.3 is depicted in Figure 6.49(a) and in

figure 6.4(b) we show the set mapping of the dependency graph.

Chapter 6. Compensation Mechanism

152

Figure 6.4 Dependency Graph for sample LRT3

6.3.2 Compensational Attributes

A customized compensation dependency entails the following compensational attributes:

 A target node 𝑛𝑜𝑑𝑒 can be a target node for one or more source nodes. Each

target node 𝑛𝑜𝑑𝑒 is associated with a list of its source nodes as

𝒏 𝑳 [𝒏] where n≥1.

 Every 𝑛𝑜𝑑𝑒 is associated with an IsVisited Boolean attribute to indicate

whether the node has been traversed or not in the comprehensive compensation

process. We say that 𝑛𝑜𝑑𝑒 has been visited if (𝒏 𝑰 𝑻 𝑬)

otherwise the node has not been traversed and (𝒏 𝑰 𝑨𝑳 𝑬).

6.3 Comprehensive Compensation

153

6.3.3 Validity of Compensation Dependencies

In this section, we describe the construction process of the dependency graph, and show

that this process will avoid inclusion of cycles.

Given an existing valid dependency graph G, appending a new dependency between any

two nodes 𝑛 𝑛 will add an edge to G. The new edge will be tested first for its

validity. If the edge does not lead to a cycle in G, then the edge is considered valid and

appended to G. If the added edge forms a cycle in G, then the edge is not valid and will

not be appended to G.

We say that an empty graph, a graph with no edges in E (G.E=ф), is a valid graph.

Adding a new edge (𝑛 𝑛) 𝑜 𝑖 , to an existing valid graph G have the following

possibilities:

1- If G.E= ф then adding a single edge to the graph will not form a cycle, therefore

it is valid.

2- If 𝒏 𝑻 then the added edge is valid since all root nodes have no edges

incident to it and therefore there is no possibility of cycle formation in G.

3- If 𝒏 𝑻 or 𝒏 𝑫 then the added edge is valid since all terminal and isolated

nodes have no edges incident from it and therefore there is no possibility of cycle

formation in G.

4- A new edge (𝒏 𝒏) will form a cycle in the existing dependency graph if (a) it

does not satisfy any of the above conditions, and (b) there exists a path from 𝒏 to

Chapter 6. Compensation Mechanism

154

5- 𝒏 in the graph (𝒏 𝒏). If there is no path from 𝒏 to 𝒏 then the compensation

dependency 𝒏 𝑪𝑪𝑫 𝒏 is a valid dependency. We define vaildG algorithm to

validate case (b).

The following algorithms are implemented to initialize, construct, update and validate

dependency graphs.

The dependency graph G is initialized as follows:

InitG(G)

1. E=ф

2. 𝒏 𝒏 𝑶𝑫𝑬 𝒏 𝒏 𝑨𝑻𝑶𝑴𝑰𝑪
3. RT=D=V

4. T=SR=TG=ф

5. 𝒉 𝒏
6. 𝒏 𝑰 𝑨𝑳 𝑬
7. 𝒏 𝒏 𝑳

Given a valid dependency graph G and a valid new edge (s,t), the following algorithm

updates G and the associated graph sets.

UpdateG(G,(s,t))

1. E=E+{(s,t)}
2. append s to t.SourceList
3. if s in D then D=D-{s}
4. SR=SR+{s}
5. if s in T then T=T-{s}
6. if t in D then D=D-{t}

7. T=T+{t}

8. RT=D SR

9. TG=TG T

Suppose that denotes node vertices in G, then we define a compensating path

 as a path in the dependency graph that starts with a source root vertex

6.3 Comprehensive Compensation

155

 and ends with a terminal vertex such that and ()

 𝑜 𝑖 (). Note that isolated nodes do not belong to any compensation path.

We say that a new added edge (s,t) forms a cycle in G if and only if there exists a path

from t to s in G, that is, where such that 𝑡 and 𝑠 and

() for i=1..(k-1).

Given a valid dependency graph G and a new edge (s,t), validG algorithm returns TRUE

if the added edge does not form a cycle in the dependency graph and returns FALSE

otherwise.

The algorithm uses a breadth first search algorithm adapted from (Cormen et al., 2009),

but it was amended to find the shortest path (if one exists) from t to s.

validG(G,(s,t))

1. Q=Ø

2. ENQUEUE(Q,s)

3. While Q≠Ø

4. u=DEQUEUE(Q,s)

5. For each 𝑳

6. if then RETURN FALSE

7. else ENQUEUE(Q,v)

8. RETURN TRUE

Chapter 6. Compensation Mechanism

156

6.3.4 Compensational Behavior

Given a valid dependency graph of an LRT, COMPMOD applies a graph traversing

mechanism to ensure that every 𝑛𝑜𝑑𝑒 is visited and that the specified order of

customised compensations is enforced.

A node in the graph can either be waiting, explored or visited. A node is said to be

waiting if there is no compensation event fired for the node. A node is said to be explored

when a compensation event (CCDep()) is fired for the node and some actions are taking

place with regard to the explored node. When the actions have been completed, execution

leaves the node and marks it as visited.

The traversing mechanism operates as follows:

Initially, all nodes are in the waiting phase, where they are all marked as not visited and

no compensation event is fired for them:

(∀ 𝒏 𝒏 𝑰 𝑨𝑳 𝑬 𝒏 𝑪𝑪𝑫 (𝒏) 𝑨𝑳 𝑬). If the LRT

commences its compensation (LRT.State=COMPENSATING), a compensation event is

fired for all root nodes in RT and they are all explored concurrently:

(∀ 𝒏 𝑻 𝒏 𝑰 𝑨𝑳 𝑬 𝒏 𝑪𝑪𝑫 (𝒏) 𝑻 𝑬).

When a node is being explored, the current state of the node is checked. If the node has

been previously succeeded, the node is called for compensation and its state is marked as

COMPENSATING. When an internal compensation completion event is fired for an

6.3 Comprehensive Compensation

157

explored compensating node, its state is marked as COMPENSATED, and it is marked

visited:

(𝒏 (𝒏) 𝒏 𝑰 𝑻 𝑬).

If the node being explored has not been previously succeeded, that is, it is in one of the

following states {NOT-ACTIVATED, COMPENSATED, SKIPPED, FAILED, ABORTED}

and therefore no compensation action is taking place on the explored node, then the node

is marked visited:

(𝑪𝑪𝑫 (𝒏) 𝑻 𝑬 𝒏 𝑪𝑪𝑬𝑬𝑫𝑬𝑫 𝒏)

A target node remains waiting until all its source nodes have been visited. Once all the

source nodes are visited, the target node is explored.

Once all the atomic nodes in the LRT are visited, a customized compensation completion

event is fired for the LRT and is marked as COMPENSATED.

6.3.5 Customized Compensation Dependencies

Customized compensation dependency (Table 6.7) is defined for target nodes and root

nodes.

A customized compensation dependency is fired for all root nodes when the LRT

commences its compensation (CCD.1).

A target node can be a target node to one or more source nodes. Hence, a customized

compensation dependency is fired for a target node iff all its source nodes have been

Chapter 6. Compensation Mechanism

158

visited (CCD.2). A compensation completion dependency is fired for the LRT when all

atomic nodes in the LRT have been visited (CCCD.1).

Dep # Dependency Component
Customized Compensation

CCD.1 𝑪𝑪𝑫 ()
𝑳 𝑻 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑰

Atomic Root node

CCD.2 𝑪𝑪𝑫 (𝑻) ⋀ 𝑳 𝑰

 𝒏

Atomic Target node
to n source nodes
where n≥1

Customized Compensation Completion
CCCD.1 𝑪𝑪𝑪𝑫 (𝑳 𝑻) ⋀ 𝒏 𝑰

 𝒏

 LRT where
n=number of atomic
nodes

Table 6.7 Customized compensation dependencies

6.3.6 Customized compensation mechanism

The compensation mechanism is automated by compensation and completion policies

presented in Table 6.8. We support our discussion with control charts 16 and 17.

Rule# Policy Component
Customized Compensations

CCR.1 ON fail(LRT)
IF “no nodes executing(activated/compensating)”
DO compensate(LRT)

LRT

CCR.2 ON CCDep(node)
IF LRT.State=COMPENSATING and
 node.state=SUCCEEDED
DO compensate(node)

Succeeded atomic
node

CCR.3 ON CCDep(node)
IF LRT.State=COMPENSATING and
 node.state≠SUCCEEDED
DO node.Visited=TRUE;

Non succeeded
Atomic node

Customized Compensation Completion
CCCR.1 ON “compensation completion event of an atomic

 node”
IF LRT.state=COMPENSATING
DO compensated(node);
 node.IsVisited=TRUE;

Atomic
compensating
node

CCCR.2 ON CCCDep(LRT)
DO compensated(LRT)

LRT

Table 6.8 Customized compensation policies

6.3 Comprehensive Compensation

159

The mechanism is automated as follows:

1- When the LRT fails, the LRT commences its comprehensive compensation

process (CCR.1).

2- When the LRT starts COMPENSATING, a compensation event is fired for all root

nodes (CCD.1).

Control Chart 16. Comprehensive Compensation

3- If a compensation event is fired for a non-succeeded node, the node is marked as

visited (CCR.3) and compensation action is not performed.

4- If a compensation event is fired for a succeeded node, the node starts

compensating (CCR.2).

5- When a compensation completion event is fired for a compensating node, the

nodes is marked compensated and visited (CCCR.1).

6- A compensation event is fired for a target node when all its source nodes have

been visited (CCD.2) and execution control goes back to step 3.

Chapter 6. Compensation Mechanism

160

7- When all nodes have been visited, a compensation completion event is fired for

the LRT (CCCD.1) and the LRT is marked as COMPENSATED (CCCR.2).

Control Chart 17. Customized compensation of atomic nodes

6.3.7 Examples

6.3.7.1 Customized Compensation Dependencies for OP Case Study

The OP workflow (Figure 4.5) does not represent any XOR patterns and therefore it is

not defined with partial compensation dependencies. We refer back to the original

specification of OP (Figure 2.1, Chapter 2), where the business logic requires that in case

of compensation, the compensation of DELIVERY must be performed before the

compensation of CHARGE. Hence there exists a compensation dependency from

6.3 Comprehensive Compensation

161

DELIVERY to CHARGE. In Figure 6.5 (a), we expand the OP workflow with

customized compensation dependencies. Note that by (1) allowing the business process

designer to freely assign customized dependencies, and (2) providing a deadlock free

dependency graph algorithm to define the comprehensive compensation order, the

designer implicitly defines a deterministic compensating process schema (Figure 6.5 (b)).

Figure 6.5 Final OP workflow schemas

When a failure declares OP failed and hence it starts compensating, the comprehensive

compensation mechanism starts by compensation all activities that are not a target in any

compensation dependency (the root nodes). The compensation of root activities are

initiated in parallel, hence they are best represented by an AND-split like pattern in the

compensating schema (Figure 6.5 (b)). Compensation of CHARGE will wait for

Chapter 6. Compensation Mechanism

162

compensation of DELIVERY to be completed. The compensation of OP is completed

once all activities are traversed and compensated/skipped depending on their execution

states. The synchronization of all compensating activities fires a completion event for OP

(CCCDep(OP)=TRUE) and it is represented in (Figure 6.5 (b)) by a synchronizer point.

In COMPMOD, comprehensive and customized compensation dependencies are only

defined for atomic nodes, and therefore they are only defined for OP’s activities as listed

in Table 6.9. Compensation completion for atomic nodes is an internal event and thus it is

not defined for atomic nodes. A compensation completion dependency is defined for OP

to signal the end of compensation execution for all activities in OP.

Note that by defining transactional attributes of OP (Section 4.4), Control flow

dependencies for OP (Section 5.5.), and the compensation dependencies in this section,

the modeling of OP in COMPMOD has been completed.

 Customized Compensation

Dependency

Customized Compensation Completion

Dependency

OP Not Defined SALES I Vi it d TRUE

CHARGE I Vi it d TRUE

OUTSOURCE_ANALYSIS.I Vi it d TRUE

DELIVERY I Vi it d TRUE

CHECK_GOODS.IsVisited=TRUE

SALES OP.State= COMPENSATING Internal Event

CHARGE DELIVERY.IsVisited= TRUE Internal Event

OUTSOURCE

_ANALYSIS

OP.State= COMPENSATING Internal Event

DELIVERY OP.State= COMPENSATING Internal Event

CHECK

_GOODS

OP.State= COMPENSATING Internal Event

Table 6.9 Customized compensation dependencies for OP activities

6.3 Comprehensive Compensation

163

6.3.7.2 Comprehensive Compensation Mechanism for Sample LRT3

We illustrate our comprehensive compensation mechanism on sample LRT3. First, we

show how nodes’ customized compensation dependencies are defined, then we assume an

execution scenario that fails the transaction, and finally we demonstrate how the

transaction is compensated. In section 6.3.5, we have shown how the dependency graph

splits the atomic nodes into root nodes and target nodes, and accordingly, decides their

customized compensation dependencies. Note that UpdateG updates the source list of all

target nodes such that: n1.sourceList=[n3], n3.sourceList=[n5], n6.sourceList=[n8],

n10.sourceList=[n5,n13], and n11.sourceList=[n6] where RT={n2,n4,n5,n7,n9,n12,n13} and

TG={n1,n3,n6,n10,n11}.

Following the definitions in (Table 6.3) and mapping them onto the dependency graph in

(Figure 6.4 (b)), the set of atomic nodes in LRT3 are defined with the following

dependencies:

1- ∀ 𝑛𝑜𝑑𝑒 𝑒𝑝(𝑛𝑜𝑑𝑒) 𝐿 𝑠𝑡 𝑡𝑒 (CCD.1). For

example, 𝑒𝑝(𝑛) 𝐿 𝑠𝑡 𝑡𝑒

2- ∀ 𝑛𝑜𝑑𝑒 𝑒𝑝(𝑛𝑜𝑑𝑒) ⋀ 𝑜 𝑐𝐿𝑖𝑠𝑡 𝑠 𝑖𝑠𝑖𝑡𝑒𝑑 𝒏 (CCD.2). For example,

 𝑒𝑝(𝑛) 𝑛 𝑠 𝑖𝑠𝑡𝑒𝑑 and 𝑒𝑝(𝑛) 𝑛 𝑠 𝑖𝑠𝑖𝑡𝑒𝑑 𝑛 𝑠 𝑖𝑠𝑖𝑡𝑒𝑑

In Table 6.10, we assume an execution scenario for LRT3 components that causes the

failure of the transaction and illustrate through execution state transitions and change of

compensation attribute values how the compensation mechanism is applied. We assume

that n13 was a vital node and failed and we assume the scope2 is vital. Failure of n13 will

Chapter 6. Compensation Mechanism

164

propagate to p0 through scope2 causing the LRT to fail. Failure of and scope2 will force

fail activated nodes n9 and n12 and hence they are both aborted. Failure of LRT

commences its comprehensive compensation. Compensating the LRT fires compensation

events for root nodes where succeeded nodes start compensating while non-succeeded

nodes are marked visited. Nodes that are in waiting phase wait for their source nodes to

be visited. For example, n1 waits for its source node n3 to be compensated and hence

visited and n3 waits for n5. Note that n10 waits for both n13 and n5, n13 is visited while n5 is

still compensating. Once n5 is compensated and visited, n10 can commence its

compensation. Although n11 is aborted and no compensation action will be performed for

it, but it still waits for its source node n6 to be visited to oblige the order of customized

compensations. We assume an arbitrary compensation completion events scenario for

compensating nodes and show how attribute values change. The LRT is compensated

when all nodes are visited.

node LRT activated LRT failed LRT compensating LRT compensating
n1 SUCCEEDED SUCCEEDED Waiting Waiting
n2 SUCCEEDED SUCCEEDED COMPENSATING Visited

n3 SUCCEEDED SUCCEEDED Waiting COMPENSATING
n4 SUCCEEDED SUCCEEDED COMPENSATING visited
n5 SUCCEEDED SUCCEEDED COMPENSATING visited
n6 SUCCEEDED SUCCEEDED Waiting COMPENSATING
n7 NOT-ACTIVATED NOT-ACTIVATED visited visited
n8 SUCCEEDED SUCCEEDED COMPENSATING visited
n9 ACTIVATED ABORTED visited visited

n10 SUCCEEDED SUCCEEDED waiting COMPENSATING
n11 ACTIVATED ABORTED waiting waiting
n12 NOT-ACTIVATED NOT-ACTIVATED visited visited
n13 ACTIVATED FAILED visited visited

Table 6.10 execution instances of LRT3

165

Chapter 7

Verification and Extensibility of COMPMOD

7.1 Introduction

In this chapter, we reason about the soundness of our approach; whether or not our

semantics deal with executions and compensations correctly. We adopt a rule-based

approach in our verification to negotiate the correctness of the model. We also dedicate a

section to highlight the extensibility of our approach; that is, to show how variant

semantics of workflow patterns can be modeled using the underlying infrastructure of

COMPMOD.

Chapter 7. Verification and Extensibility of COMPMOD

166

7.2 Verification Approach

In COMPMOD, WF semantics exhibits two control flow types:

1- Forward control flow which defines the normal flow logic according to WF patterns’

execution semantics such as control flow in AND scopes or sequence patterns.

2- Compensation control flow which defines two different control flows:

(a) Reverse control flow of forward flow in case of partial compensation mode. For

example, compensating paths within concurrent scopes in reverse order.

(b) Customized control flow in case of comprehensive compensation mode.

To reason about the correctness of our proposed model, we apply the following

verification approach:

First we verify correctness of forward flow and reverse flow using soundness properties

of workflows proposed in (Van Der Aalst, 1997, 1998; Van Der Aalst et al., 2011). The

works discuss the soundness properties in terms of WF-nets (type of Petri-nets) and does

not capture compensation semantics. We adopt the soundness properties of (Van Der

Aalst, 1997, 1998; Van Der Aalst et al., 2011) but we define them in the context of

COMPMOD rule-based semantics, or more specifically, we define soundness properties

based on analysis of rule invocation graph. In other words, we negotiate the correctness

of COMPMOD rule invocations.

Soundness properties in brief are: (1) option to complete (reachability): the end point of

the WF is reachable for each WF execution, (2) proper completion (consistent execution):

if the end point is reached, all executions of tasks must have terminated in consistent final

7.2 Verification Approach

167

state, and (3) no dead transitions: all possible WF executions must not lead to dead-lock

points in the flow.

To verify properties (1) and (2), we adopt rule correctness approaches from literature

such as triggering graphs (Aiken et al., 1992, 1995) and we set our own definitions and

demonstrations. To verify property (3), we demonstrate the property by the proposed

model’s construction and formalism.

Second we verify the behavior of customized compensation flow by a rule invocation

graph. We show how the customized order of compensations is enforced and executed

correctly. As a proof-of-concept, we demonstrate this property using the OP case study in

Figure 6.5

The general definition of a correct and reliable execution of control flow is:

Def. 7.1: (Correct and reliable control flow execution)

A control flow is correct and reliable iff it satisfies the following

properties:

1- It guarantees a consistent change of states for LRT and its

constituent components.

2- When execution starts, a final accepted state of the LRT is reached

either by successful completion or successful compensation.

3- If the control flow is deadlock free.

In Figure 7.1, we depict a chart to illustrate our verification approach. The discussions

follow in the next sections.

Chapter 7. Verification and Extensibility of COMPMOD

168

Figure 7.1 Verification Approach Chart

7.3 Soundness of WF model

As we have discussed in previous section, verifying soundness properties of our WF

model implicitly verifies correctness of both forward and reverse control flows.

We represent the control flow in our workflow schema by a rule invocation graph which

is defined as:

Def. 7.2: (rule invocation graph)

A rule invocation graph is a chain of rule invocations. A rule ri may

invoke rj if the action of ri fires an event assessed by rj. An invocation

graph is a directed graph where each vertex is a rule and an edge exists

from ri to rj iff ri invokes rj.

To illustrate, we depict in Figure 7.2 the rule invocation graph for a running sample LRT4

that consists of two parallel nodes n1 and n2 in a concurrent AND scope. We assume that

7.3 Soundness of WF Model

169

both nodes are vital and n2 fails after n1 has succeeded. The first vertex ActR.1 is

triggered by an internal event for activating the LRT. ActR.1 changes the state of LRT

from NOT-ACTIVATED to ACTIVATED. Consequently, ActDep(p0) is set to TRUE

which is the event assessed by ActR.2 and therefore ActR.2 is invoked by ActR.1.

Analogously, the same method applies to the rest of transitions in the graph.

Highlighted vertices denote rules that are invoked by raising internal events. However,

they appear in the graph as being invoked by another rule. Note that internal events are:

activation of LRT and successful completion, failure, or successful compensation

completion of atomic nodes. Internal events (except for LRT activation) are immediate

subsequent events for an activated atomic node. Hence, ActR.3 for an atomic node is

either followed by CompLR.1 or FailR.1 and CCR.2 is always followed by CCCR.1.

Another important note is the root rule and terminal rules in the invocation graph (bold

vertices). A root rule is the first rule in any invocation graph which cannot be invoked by

any other rule. In our set of management rules, ActR.1 is the root rule which activates the

LRT and initiates the invocation graph. On the other hand, terminal rules are rules that

cannot invoke any further rules, that is, the action part of the rule does not trigger any

further events in the system. In our set of rules, CompLR.3 and CCCR.2 are terminal

rules which declare respectively that the LRT has either successfully completed or

successfully compensated.

Chapter 7. Verification and Extensibility of COMPMOD

170

We chose to verify soundness based on rule analysis for the following reasons:

1- Rules relate to components and to the method by which components change their

execution states. A correct and consistent rule invocation graph implies consistent

change of component states.

2- Rules relate to the ordering of events and enforce constraints on their firings.

Note that components are structured with arbitrary nesting, but their

interrelationships are encapsulated such that components can only interact directly

with their immediate neighbors or indirectly through their immediate superiors in

a recursive manner. Encapsulation of execution semantics enforce a well-defined

structure, and ease stepwise correctness verification, i.e. along and across LRT

structure. For example, in the rule invocation graph of LRT4, we note how

ordering of activations are enforced by rules. Activation of p0 can only happen

after activation of LRT4 and activation of p1 and p2 can only happen after

activation of scope1.

In the following subsections, we discuss soundness properties.

7.3 Soundness of WF Model

171

Figure 7.2 Rule Invocation Graph for sample LRT4

Chapter 7. Verification and Extensibility of COMPMOD

172

7.3.1 Consistent Rule Invocation

A consistent execution of control flow depends on a consistent rule invocation graph.

Def. 7.3: (Consistent rule invocation graph)

A consistent rule invocation graph is a terminating graph and where each

rule invocation moves the state of LRT and its components from a

consistent state to another consistent state.

In order to verify consistency of execution, we show two properties: completeness of

rules and rule termination.

Completeness implies that every possible execution event fired by the running LRT

triggers a rule, or as proposed in (Suwa et al., 1982), that there are no missing rules to

refer to a situation that may exist in which a particular event is fired but no rule can be

triggered to handle the event.

To demonstrate completeness property, we make use of the control charts listed in

Chapters 5 and 6, which demonstrate the automated execution behavior of an LRT and its

components throughout the LRT’s execution life cycle. The complete set of rules (thirty

six rules) is mapped onto the charts as a means to illustrate its completeness criteria: that

is, for every possible event fired by the LRT and its constituent components, there exists

a rule to handle the event. For example, (Charts 5, page 111) shows which rules may be

invoked when an execution path fires a successful completion event. A path could be

main path p0, exclusive, or concurrent. For each type of path there exists a rule that

handles the event. If the path is p0, then CompLR.3 succeeds the LRT. If the path was

exclusive path, then CompLR.4 succeeds its superior exclusive scope. If it was a

7.3 Soundness of WF Model

173

concurrent path, then depending on the completion and failure dependencies of its

enclosing scope, the enclosing scope could either succeed by CompLR.5 or fail by

FailR.7 (chart 6, page 112). Similar argument applies to the rest of control charts.

Rule termination correctness criteria guarantee that rules cannot activate each other

indefinitely, or as defined in (Papamarkos et al., 2006) “A set of ECA rules is said to be

terminating if for every initial event and any initial database state, the rule execution

terminates”. The Triggering graphs approach proposed in (Aiken et al., 1995) and

(Aiken et al., 1992) detects non-terminating rules. We adopt their general definition of

triggering graphs and implement our own verification method.

The definition of the triggering graph is same as the rule invocation graph in (Def. 7.2). A

triggering graph is non-terminating if a cycle exists in the graph. A cycle exists if a rule ri

triggers/invokes rule rj where rj precedes ri it in the triggering graph.

In our rule invocation graph, a cycle may occur iff an event e could fire more than once

for the same component c. For example, if after n1 in LRT4 has been succeeded; an

activation event fires again for n1 to move the state of n1 to activated once again.

Therefore, we conclude the following definition for terminating rule invocation graphs:

Def. 7.4: (Terminating Rule Invocation Graph)

A rule invocation graph is Acyclic and terminating iff an event e may fire exactly

once for a component c.

Chapter 7. Verification and Extensibility of COMPMOD

174

Note that actions in rules change the state of components. For example, ActR.1 changes

state of LRT from NOT-ACTIVATED to ACTIVATED. In order to verify the

termination property, we demonstrate that “actions” in our management rules which

change the execution state of components are single occurrence events.

We introduce the term single-occurrence to refer to events that can only fire ones for

each component in its execution life cycle. We show that all events in our model are

single-occurrence events.

There two ways by which LRT and its components change their states. Either by intra-

event raised for the component that causes the transition of its state (e.g. FailR.1 changes

state of an atomic node from ACTIVATED to FAILED upon receiving “failure/

cancelation event of atomic node”). A change of state of a component may also be

triggered by Inter-events raised by a change of state of an interrelated component (e.g.

FFailR.1 changes the state of an atomic node from ACTIVATED to FAILED upon

forced failure of its enclosing path). Therefore, we further classify the rules into two

categories: (1) intra-rules: rules triggered by intra-events, and (2) inter-rules: rules

triggered by inter-events.

One way of demonstrating that events are single occurrence events, is to map the set of

thirty six management rules on the state transition diagrams of the LRT and its

components (Figure 7.3). We show that both inter-rules and intra-rules always maintain a

consistent change in the state of components and interrelated components during their

7.3 Soundness of WF Model

175

execution life cycle. That is, no rule invocation moves a component to a previous state in

the STDs. Therefore, the events of activations, completions, failures, compensations,

compensation completions are all single occurrence events. We thus conclude that, our

rules invocation graph is acyclic and terminating.

Note that in the STD diagrams, some arcs are labeled with more than one rule. However,

these rules are mutually exclusive, that is only one rule may be invoked. For example in

Figure 7.3 (c), two rules namely CpCompLR.1 and CCCR.1 label the transition of an

atomic node from COMPENSATING state to COMPENSATED upon receiving an

internal “compensation completion event” for the atomic node. The constraints in these

rules are disjoint and only one will be invoked depending on state of the LRT. If the LRT

was activated, then the compensation of the node is performed during partial

compensation mode and CpCompLR.1 will be invoked. If the LRT state was

COMPENSATING, then the compensation of the atomic node is performed during

comprehensive compensation mode and hence CCCR.1 will be invoked.

Chapter 7. Verification and Extensibility of COMPMOD

176

 (a) LRT (b) P0

(c) Atomic Nodes

 (d) Scope Nodes (e) Execution Paths

Figure 7.3 STDs with Management Rules

7.3 Soundness of WF Model

177

7.3.2 Deadlock Absence

In COMPMOD, deadlock behaviors are avoided in two ways:

1- By construction: undefined behavior of a join pattern could occur if more than

one failure or completion event is triggered for the same concurrent path relating

to multiple instances of the process. The structured construction of the workflow

schema ensures that all path triggered events relate to the same process instance.

2- By formalism:

(a) Through deadlock free semantics of synchronizer patterns. In case of

concurrent scopes, failure assumptions listed in (Chapter 4, section 4.7.2)

guarantee that an execution path reaches a termination state within a finite

time, no matter what. We have also shown in (Chapter 5, section 5.2.2) that in

the case of OR scope, if none of the paths is enabled, then a failure event is

fired for that scope.

(b) Compensation completion dependency in (Chapter 6, section 6.2.2.2)

 which is defined for compensable concurrent scopes, implicitly defines a

synchronizer for the compensating paths. The behavioral context of such

synchronization cannot possibly lead to deadlock, because a compensating

path is guaranteed to complete by compensation assumption 2, in (Chapter 4,

section 4.7.4). Furthermore, the compensation completion of a compensating

scope does not exhibit ambiguous behavior, since each compensating path is

guaranteed to complete.

Chapter 7. Verification and Extensibility of COMPMOD

178

(c) Customized compensation dependencies are only allowed to be defined for

valid assignments that do not lead to a cycle in the customized compensation

graph (Chapter 6, section 6.3.3) and thus, our comprehensive compensation

mechanism provides a deadlock free compensation traversing algorithm.

7.3.3 Reachability

Reachability property guarantees that execution of LRT reaches a final accepted state. In

our model, the final accepted states for the LRT are SUCCEEDED or COMPENSATED.

In the context of rule invocation graphs, we can define reachability as follows:

Def. 7.5: (reachability of rule invocation graphs)

A rule invocation graph for a running instance of an LRT satisfies reachability

property iff and only if it creates a connected graph where the graph starts by the

root rule ActR.1 and terminates with a terminal rule CompLR.3 or CCCR.2.

By showing in the previous discussions that the set of rules are complete, and that the

rule invocation graph is terminating, consistent, and deadlock free, we conclude that

reachability property is satisfied.

For illustration, we refer to the rule invocation graph of LRT4 in Figure 7.2. We have

demonstrated how rule invocations have terminated with CCCR.2.

7.3 Soundness of WF Model

179

7.3.4 Proof-of-concept by Example

In this section, we verify by example a specific behavioral property of our COMPMOD

semantics. We show using the rule invocation path how the customized compensation

order is preserved, that is, we verify the correctness of the customized compensation

control flow. We refer to our motivating case study OP in (Figure 6.5) and its

compensation dependencies listed in Table 6.9.

We have assumed a failure scenario in Chapter 2 for OP process and we use the same

scenario here. We assumed that vital activity CHECK_GOODS failed to succeed during

which SALES, DELIVERY, and CHARGE have already succeeded and

OUTSOURCE_ANALYSIS was still activated. According to the failure handling

mechanism of COMPMOD, the failure of CHECK_GOODS will propagate upwards to

fail OP. At the same time, activated activity OUTSOURCE_ANALYSIS will be aborted

by downwards propagation.

In Figure 7.4, we depict a caption of the rule invocation graph for the running OP

process. The graph starts at time t1
19when rule CCR1 is invoked due to the global failure

event of OP and the process starts its comprehensive compensation mode. Note that in

OP (Figure 6.5 (a)), there was only one customized compensation dependency from

DELIVERY to CHARGE to enforce compensation of CHARGE to be performed only

after DELIVERY has successfully compensated. When OP.State=COMPENSATING,

19 Note that time labeling does not reflect real time clock. It is used for referencing

arbitrary time intervals where t1<t2<..<t7

Chapter 7. Verification and Extensibility of COMPMOD

180

the customized compensation dependency of SALES, OUTSOURCING_ANALYSIS,

DELIVERY, and CHECK_GOODS evaluate to true (Table 6.9). Hence, CCR.2 is

invoked for succeeded activities SALES and DELIVERY and they start compensating.

However, for non-succeeded activities OUTSOURCE_ANALYSIS and

CHECK_GOODS, rule CCR.3 is invoked which marks the two activities IsVisited and

no compensation actions takes place. We arbitrarily assumed that compensation

completion of SALES happens at time t3 at which rule CCCR.1 is invoked and marks

SALES.State=COMPENSATED and SALES.IsVisited=TRUE. Note that the

customized compensation dependency for CHARGE still evaluates to FALSE since it

waits for DELIVERY to finish its compensation. Assuming that DELIVERY completes

its compensation at t4 at which CCCR.1 is invoked and marks

DELIVERY.State=COMPENSATED and DELIVERY.IsVisited=TRUE. At this point,

the customized compensation dependency for CHARGE evaluates to TRUE and CCR.2

is invoked to start compensating CHARGE. CCCR.2 will only be invoked when all

activities are visited and the compensation completion dependency for OP (Table 6.9)

evaluates to TRUE. Therefore, we have illustrated using the rule invocation graph of OP

that the customized compensation order is preserved.

7.3 Soundness of WF Model

181

Figure 7.4 Rule invocation graph for OP

7.4 Extensibility

The model supports two types of concurrent executions through AND-scopes and OR-

scopes. We provide the essential infrastructure such that the formalism of concurrency

can be relaxed or extended in many different ways in order to add additional flexibility to

concurrent executions or to add new concurrency semantics.

As the approach is based on a declarative (rule based) method, it is easy to implement

and extend its operational semantics. For example, we can implement “the successful

completion of an exclusive scope triggers a successful completion event of its enclosing

scope” directly into a completion policy. Declarative formalisms add two advantages: (1)

Chapter 7. Verification and Extensibility of COMPMOD

182

expressing consistency conditions such as “a component can only activate if its superior

is activated” and (2) provides flexibility for extending the model by adding new scope

pattern semantics.

In General, in order to introduce a new scope pattern, the following steps are required:

1- A split pattern is combined with a join pattern. The informal semantics of the new

scope must be stated and context issues related to possible deadlocks or undefined

behavior of its join end must be analyzed.

2- The impact of vitality of constituent components on the desired operational

semantics of the new scope patterns must be stated. Adding more flexibility and

practicality on concurrent executions may lead to complex concurrency

semantics, and would necessitate imposing additional vitality assumptions to

achieve a correct consensus about successful completion and failure conditions of

the new scope.

3- Formally implement the new scope’s operational and transactional semantics by

defining its completion and failure dependencies and defining its successful

completion criteria. This may require adding new transactional attributes and

possibly new management policies if the existing modeled infrastructure requires

extension.

4- Some of the join patterns in workflows describe high flexibility in the semantics

of concurrent executions in order to progress execution as quickly as possible. For

example, such patterns may allow succeeding the pattern upon completion of a

7.4 Extensibility

183

5- specified number of execution paths while a decision is made about the remaining

in-progress paths such as cancelling them or allowing them to complete without

affecting the state of the join pattern. In case the pattern is allowed to succeed

while there is remaining work in progress, it is important to analyze the effect of

possible failures of the remaining paths and make decisions about their

compensations in order to retain the overall reliable behavior of the pattern.

We illustrate extensibility criteria in the following section by showing three examples of

how extensions of the model can be achieved. In section 7.4, we provide an evaluation of

COMPMOD based on workflow patterns of (Russell et al., 2006).

7.4.1 Examples

In the following examples, we outline a preliminary analysis of extending COMPMOD

with three variant semantics for AND scopes. As stated above, more thorough analysis is

required to maintain a reliable and consistent operational semantics.

Example 1: it is possible to relax the concurrent execution of an AND-scope that

encapsulates vital paths, so that the scope successfully completes when all vital paths

successfully complete. Subsequent completions or failures of non-vital paths will not be

assessed, and will not affect the state of its enclosing scope. In this case, the completion

dependency of the scope will be defined as follows (AND
R
 denotes a relaxed AND-

scope):

Chapter 7. Verification and Extensibility of COMPMOD

184

𝑪 𝑳𝑫 () ⋀ (𝒉 𝒉 𝑪𝑪𝑬𝑬𝑫𝑬𝑫)

Accordingly, the following new policy can be added:

ON CompLDep(scope)

IF scope=AND
R

 DO succeed(scope)

Example 2: Extend the model by a Cancelling Discriminator AND Scope (AND
CD

).

This would typically introduce a new scope pattern where the split point is an AND-split

and the join end is a cancelling discriminator (Russell et al., 2006). An AND
CD

 scope

successfully completes when 1 out of m paths succeeds, other activated paths are

cancelled. This can be implemented by adding a discriminable attribute to execution

paths where paths within an AND
CD

 have this attribute set to TRUE. The semantics of

scope can be informally defined as follows:

1- When a discriminable path succeeds the scope succeeds (new policy):

 ON CompLDep(path)

IF path.IsDiscriminable=TRUE

 DO succeed(path.superior)

2- When a discriminator scope succeeds, fire a cancellation event for all its activated

paths:

 𝑫 (𝑫 𝒏 𝑷 𝒉) 𝒉 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫
 𝑷 𝒉 𝑪𝑪𝑬𝑬𝑫𝑬𝑫

 The force fail event will be assessed by FFailR.3.

3- To prevent a cancelled vital discriminator path from failing its superior, it should be

ensured as a consistency constraint that a path can either be discriminable or

concurrent. Hence FailR.5 will not propagate the force failure of the path upwards to

its superior.

7.4 Extensibility

185

6- Decisions have to be made about cancelled paths. For integrity of process,

cancelled paths must be compensated unless the business logic requires otherwise.

To compensate a discriminable path, a policy “on force-fail event of discriminable

path, compensate the path” must be implemented.

Example 3: Extend the model by a Structured Partial Join AND Scope (AND
SPJ

). This

would typically introduce a new scope pattern where the split point is an AND-split and

the join end is a structured partial join (Russell et al., 2006). An AND
SPJ

 scope is

successfully completed when n out of m paths succeeds, other activated paths are allowed

to complete but their completion will not trigger any further events for the enclosing

scope. Partial join scopes may be extended with two local attributes, one attribute to

specify n and one as a counter that is set to zero and incremented by one each time a

successful completion of a path is triggered. The scope succeeds by applying a rule that

specifies “On successful completion of a concurrent path, and if the path’s superior is an

AND
SPJ

 and the number of succeed paths within the scope is equal to n, then succeed

path’s superior”.

186

Chapter 8

Conclusions and Future Work

8.1 General Remarks

The COMPMOD model is not anticipated to be “yet another LRT model”. Our aim is to

provide an underlying infrastructure that supports compensation composition, as well as

service composition, in a way that is flexible in structure and in representation. In

general, strict execution semantics greatly simplify the task of ensuring reliability;

however, this is usually at the expense of reduced flexibility. We have attempted to

balance reliability and flexibility requirements. Our aim is “what the designer wants” and

not “what the formalism obliges”, and in keeping a running process alive despite of

recoverable failures.

8.1 General Remarks

187

In this work, we have addressed the failures and cancellations of web services, the

cancellation of the LRT by a user, and cancellation of the LRT by irrecoverable failures.

We have dealt with cancellation events as failures, since the cancellation of a web service

or an LRT semantically means “its failure to complete its required task”. Furthermore,

the user is permitted to cancel a transaction at any point during its execution. However, it

is possible to add extra constraints to prohibit LRT cancelation after a certain point

during its execution, e.g. after goods have been shipped or after payment have been

received, to reflect real world business practice.

We have shown that capturing the semantics of execution paths adds great flexibility in

applying different semantics for concurrent executions, as well as for representing

arbitrary nesting. A further advantage would be a relatively simple representation and

formalism of the control flow. For example, some approaches supporting control flow

modeling depend on using a control flow token, passing either (true tokens) as in petri-

nets or (true /false tokens) as in (Weske, 2001). A true token triggers the next activity and

false token for skipped activities. As for petri-nets, to manage concurrent threads of

execution, “places” in the graph are used to manage token passing to join patterns. As

may be seen from the examples demonstrated in (Russell et al., 2006), the graphs show

complexity in representation and modeling, even for a small number of connected nodes.

There is a plethora of LRT models that address the similar problems that we address in

this research, but with different emphasis, and the overlying domains and solutions we

provide are comparatively different. One of the main differences between the

file:///C:/Users/hp/Desktop/CORRECTIONS/CORRECTIONS/Correction-Thesis.docx%23_ENREF_3
file:///C:/Users/hp/Desktop/CORRECTIONS/CORRECTIONS/Correction-Thesis.docx%23_ENREF_42

Chapter 8. Conclusions and Future Work

188

COMPMOD model and other LRT models is that nodes in COMPMOD are simply web

services or tasks, and are not sub-transactions. Moreover, we have developed the model

in a generic way that applies to any technology other than web services for representing

tasks. The choice of web services was to highlight on the most loosely coupled

environment where the probability of failure is high and can happen at any time during

the execution of the business process.

The limitations of COMPMOD are those which are related to the assumptions made –

lifting the assumptions could be investigated in the future. For example, compensation

assumption 2 which guarantees a successful completion of a compensating atomic node

could be lifted. In this case, further investigation and analysis must be carried out to

decide what actions must be done when a compensating node fails or when a

compensating transaction fails. Another limitation is the absence of loop patterns that

could be realized as a necessary practice in workflow scenarios. Our proposed

infrastructure provides the necessary mechanisms to apply variant semantics for

concurrency and compensations as well as to loop structures and we have considered

modeling loop semantics as future work.

With respect to scalability, policy driven management systems have been used in many

time critical large scale systems successfully, but only industrial scale case studies would

bring these to the forefront.

8.1 General Remarks

189

Lastly, we emphasize the importance of making a clear separation between failure

handling and compensation handling mechanisms, to allow for better management of the

overall process.

8.2 Thesis Conclusions

How to compensate a long running transaction is a challenging problem in designing

infrastructures to support B2B integration. Compensation of long running activities

requires correct recovery mechanisms to guarantee reliable execution.

We presented an approach for modelling and enacting failure recovery and compensation

on nested long running transactions. The approach provides a novel model that makes

explicit the propagation of failure events through the transactions. It also distinguishes

two types of nodes - vital and non-vital - which allow a process designer to include

activities in the design that are useful but where failure does not matter. We also

introduced the idea of custom defined compensation dependencies in the context of final

failure of an LRT. The designed propagation rules are enforced through a novel rule

based management system, allowing for monitoring and controlling LRTs. Nested

workflows are used as throughout examples.

One of the motivations for this work was the perceived lack of high level approaches to

compensation handling: compensations are part of the business process and are best

understood at the design level. Existing support in some BPM tools (e.g. TIBCO BW or

Chapter 8. Conclusions and Future Work

190

IBM Process Server) and also existing work in exception handling for processes (Russell,

Van Der Aalst, & Hofstede, 2006; Lerner, Christov, & Osterweil, 2010), address the

issue of “things going wrong” in a way that is akin to programming level solutions. They

require detailed consideration of each individual case of possible failure and then a

deliberate exploration of how to handle it. The presented work lays a foundation for

abstracting away from specific errors and considering how failure and compensation

should be handled in the situations which are meaningful to address for the business

analyst while dealing with all other cases automatically in standard ways defined through

the framework and its policies. Programmatically this might mean that the tools

implement the details of the framework through an exception handling mechanism, but

this would be transparent to the user.

There is also a growing interest in risk-aware business processes and our notion of

vitality (combined with the proposed framework) could be one way of addressing this.

However, this requires further study.

More generally, there are two areas of work that are required to better support

transactions: workflow or business process design standards and workflow execution

environments. For the former, much work has been done over the last few years with the

introduction of BPEL (more as an implementation oriented mechanism) and BPMN

(more targeted as a business requirements capture mechanism) in formulating and

designing workflows. These efforts consider ideas of compensation and alternatives that

can be engaged when repair is needed due to partial failure, but they are somewhat

8.2 Thesis Conclusions

191

cumbersome to describe. In our work, we provide a good solution in terms of

dependencies that automatically takes care of many of the issues that arise, letting the

business analyst focus on the parts of the process where more customized dependencies

are needed. Also, none of the mechanisms support the distinction of vital and non-vital

parts of the process (with the only option being an alternative scope to capture non-vital

aspects, making the flow less intuitive).

Regarding the execution environments, these are currently more as interpreters for

workflows that largely leave transaction handling aside at the high level and assume that

transactions are managed at lower levels in the execution environment, and possibly

through the aforementioned repair routes. It would be desirable to include transaction

management as a more native part of the workflow engines – and again as much of these

work in an event based fashion, our approach should be able to provide a solution for

ready implementation.

To conclude, our approach investigates the reliability of long running transactions in a

conceptual, rather than an implementation dependent way, and as consumers of these

models are generally business developers, we believe that formalisms should be relatively

simple to understand, express and reason about.

Chapter 8. Conclusions and Future Work

192

8.3 Future Work

For future research, we intend the following works:

1- Direct future work includes implementation of an operational system reflecting

this approach and its use in some larger case studies

2- Providing more expressiveness of the compensation semantics by adding more

flexibility in compensation composition by:

(a) Enriching the semantics of partial compensations by allowing customized

compensations in concurrent scopes.

(b) Enriching the semantics of comprehensive compensations by allowing the

source or a target node in a compensation pattern to be a scope node, rather

than an atomic node.

(c) Allowing scopes to be atomic by specification, such that if an atomic scope

fails, it is compensated without interrupting the execution of the LRT. A

necessary constraint in assigning a scope with the atomic transactional

property is that the scope cannot trigger the global failure of the LRT, because

otherwise it will be compensated through comprehensive compensation.

3- To aim to “keep a running process alive despite of irrecoverable failures” by

supporting dynamic adaptations of web services/workflows during run time.

4- Extending the model by adding loop structures, as well as enriching concurrency

semantics.

8.3 Future Work

193

5- As the number of rules may expand by extending the model with new

concurrency semantics, a rule-base model checker for the correctness criteria

discussed in the evaluation section may be implemented.

The research conducted in this thesis raises interesting questions for future investigation:

1- Is it possible to design a reliable transaction management model for unstructured

workflows, and how far might this benefit from the work done in transforming

unstructured workflows into structured ones?

2- Given the formal semantics of individual split and join patterns, can we develop a

technique to create new scopes patterns by joining splits and joins, and

automatically define the semantics of the new scope and raise deadlock issues and

context problems?

194

APPENDIX A – TABLE OF DEPENDENCIES

Dep # Dependency Component

Activations

ActD.1 𝑨 𝑫 () 𝑳 𝑻 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 Main path 𝑝

ActD.2 𝑨 𝑫 () 𝒉 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 First node in a path

ActD.3 𝑨 𝑫 (𝒏)

(𝒏 𝑪𝑪𝑬𝑬𝑫𝑬𝑫) (𝒏 𝑰 𝒏
 𝑨𝑰𝑳𝑬𝑫)

Sequential Nodes :

𝑛𝑜𝑑𝑒 successor of

𝑛𝑜𝑑𝑒

ActD.4 𝑨 𝑫 (𝒉) 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 1- Concurrent paths of

AND scope

2- First path in XOR

scope

ActD.5 𝑨 𝑫 (𝒉) 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 𝒉 𝑰 𝑬𝒏 Concurrent paths of

OR scope

ActD.6 𝑨 𝑫 (𝒉)

 𝒉 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫

Paths 2..m in XOR

scope where m>=2

Completions

CompLD.1 𝑪 𝑳𝑫 (𝒉)

 𝑪𝑪𝑬𝑬𝑫𝑬𝑫 𝑨𝑰𝑳𝑬𝑫)

Path

CompLD.2 𝑪 𝑳𝑫 ()

⋀ (𝒉 𝑪𝑪𝑬𝑬𝑫𝑬𝑫 𝒉 𝑨𝑰𝑳𝑬𝑫)

AND scope with m

concurrent paths

CompLD.3 𝑪 𝑳𝑫 ()

⋀

(𝒉 𝑰 𝑬𝒏

(
 𝒉 𝑪𝑪𝑬𝑬𝑫𝑬𝑫

 𝒉 𝑨𝑰𝑳𝑬𝑫
))

OR scope with m

concurrent paths

Failures

FailD.1 𝑫 (𝒉)

(⋀ 𝒏 𝑳 𝒏 𝑨𝑰𝑳𝑬𝑫

)

Non-Vital path

FailD.2 𝑫 (𝑨 𝑫)
⋀ (𝒉 𝑨𝑰𝑳𝑬𝑫)

AND scope with m

paths

FailD.3 𝑫 (𝑶)
(⋀ (𝒉 𝑰 𝑬𝒏 𝒉 𝑨𝑰𝑳𝑬𝑫))
(𝑶 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 (⋀ 𝒉 𝑰 𝑬𝒏

 𝑨𝑳 𝑬))

OR scope with m

paths

Force-Fails

FFailD.1 𝑫 (𝒏) 𝒏 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫 𝒉
 𝑨𝑰𝑳𝑬𝑫

Where path=node.superior

Atomic node/scope

FFailD.2 𝑫 (𝒉) 𝒉 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫
 𝑨𝑰𝑳𝑬𝑫

Where scope=path.superior

𝑝 𝑡 𝑝

FFailD.3 𝑫 () 𝑳 𝑻 𝑨𝑰𝑳𝑬𝑫 Main path 𝑝

Appendix A – Table of Dependencies

195

Dep # Dependency Component

Forward\Backward Compensations

CompD.1 𝑪 𝑫 () 𝑷 𝒉 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑰

Last node on a

compensable path

CompD.2 𝑪 𝑫 (𝒏)

superior 𝑪 𝒏 𝒏
⋀ (𝒏 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫 𝒏 𝑰𝑷𝑷𝑬𝑫)

A node that has a

successor on a

compensable path

node2=successor(node

1)

CompD.3 𝑪 𝑫 (𝒉) 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑰

Path within a

compensable scope

Compensation Completion

CpCompLD.1 𝑪 𝑪 𝑳𝑫 (𝒉)

(𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫)
 𝑰𝑷𝑷𝑬𝑫)

Compensable Path

CpCompLD.2 𝑪 𝑪 𝑳𝑫 () 𝒏 𝒏

(⋀ (𝒉𝑳 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑬𝑫 𝒉𝑳

 𝑶𝑻 𝑨𝑪𝑻𝑰 𝑨𝑻𝑬𝑫))

Compensable

concurrent scope with

m paths

Customised Compensations

CCD.1 𝑪𝑪𝑫 ()

𝑳 𝑻 𝑪𝑶𝑴𝑷𝑬 𝑨𝑻𝑰

Atomic Root node

CCD.2 𝑪𝑪𝑫 (𝑻) ⋀ 𝑳 𝑰

 𝒏

Atomic Target node to

n source nodes where

n≥1

Customised Compensation Completion

CCCD.1 𝑪𝑪𝑪𝑫 (𝑳 𝑻) ⋀ 𝒏 𝑰

 𝒏

 LRT where n=number

of atomic nodes

196

APPENDIX B – TABLE OF POLICIES

Rule# Policy Component

Activations

ActR.1 ON “activation event of LRT”

IF LRT.state=NOT-ACTIVATED

DO activate(LRT)

LRT

ActR.2 ON ActDep(𝑝

)

DO activate(𝑝

)

Main execution

path P0

ActR.3 ON ActDep(component)

IF component.superior.state=ACTIVATED and

 component≠p0

DO activate(component)

atomic node,

scope, and

path≠p0

Completions

CompLR.1 ON “successful completion event of atomic node”

DO succeed(node)

Atomic node

CompLR.2 ON succeed(node)

IF CompLDep(node.superior)=TRUE

DO succeed(node.superior)

Vital and non-

vital path with

succeeded last

node

CompLR.3 ON succeed(path)

IF path=𝑝

DO succeed(LRT)

LRT

CompLR.4

ON succeed(path)

IF path.IsExclusive=TRUE

DO succeed(path.superior)

Exclusive scope

CompLR.5 ON CompLDep(scope)

IF scope.state≠failed and

 FailDep(scope)=FALSE

DO succeed(scope)

Concurrent scope

CompLR.6 ON fail(node)

IF ¬node.IsVital and node.superior.IsVital and

CompLDep(node.superior)=TRUE

 DO succeed(node.superior)

vital path with

failed non-vital

last node

CompLR.7 ON fail(node)

IF ¬node.IsVital and ¬node.superior.IsVital and

CompLDep(node.superior)=TRUE and

FailDep(node.superior)=FALSE

 DO succeed(node.superior)

non-vital path

with failed non-

vital last node

Appendix B- Table of Policies

197

Rule# Policy Component

Failures

FailR.1 ON “failure/cancellation event for atomic node”
DO fail(node)

Atomic node

FailR.2 ON fail(node)

IF node.superior.state=ACTIVATED and

 node.IsVital

DO fail(node.superior)

vital path

(bottom-up

propagation)

FailR.3 ON fail(path)

IF path=𝑝

DO fail(LRT)

LRT

FailR.4 ON fail(path)

IF ¬path.HasAlternative and path.IsExclusive

DO fail(path.superior)

Exclusive scope

FailR.5 ON fail(path)

IF path.IsVital=TRUE and

 Path.IsConcurrent

DO fail(path.superior)

concurrent scope

(bottom-up

propagation)

FailR.6 ON FailDep(path)

DO fail(path)

 non-vital path

FailR.7 ON FailDep(scope)

IF scope.state≠failed

DO fail(scope)

Concurrent scope

Force-Fails

FFailR.1 ON FFailDep(node)

IF node.type=ATOMIC

DO abort(node)

Atomic node-

Propagation

FFailR.2 ON FFailDep(node)

IF node.type=SCOPE

DO fail(node)

scope -Propagation

FFailR.3 ON FFailDep(path)

DO fail(path)

Path- Propagation

FFailR.4 ON “cancellation event of LRT”

IF LRT.State=ACTIVATED

DO fail(LRT)

LRT

Forward\Backward Compensations

CompR.1 ON fail(path)

IF path.hasAlternative and

 node.superior.state=ACTIVATED

 DO compensate(path)

Exclusive path with

alternative

CompR.2 ON CompDep(path)

IF LRT.State=ACTIVATED and (path.state=SUCCEEDED

 or path.state=FAILED)

DO compensate(path)

Compensable path

previously

succeeded or failed

CompR.3 ON CompDep(node)

IF LRT.State=ACTIVATED and node.Type=ATOMIC and

 node.State=SUCCEEDED

DO compensate(node)

succeeded Atomic

node

CompR.4 ON CompDep(node)

IF LRT.State=ACTIVATED and node.Type=ATOMIC and

 (node.State=FAILED or node.state=NOT-ACTIVATED

 Or nodeState=ABORTED)

DO skip(node)

Non succeeded

atomic node

CompR.5 ON CompDep(node)

IF LRT.State=ACTIVATED and node.Type=SCOPE and

 (node.State=SUCCEEDED or node.state=FAILED)

DO compensate(node)

Succeeded or failed

scope

CompR.6 ON CompDep(node)

IF LRT.State=ACTIVATED and node.Type=SCOPE and

 node.state=NOT-ACTIVATED

DO skip(node)

Not activated scope

Appendix B- Table of Policies

198

Rule# Policy Component

Compensation Completions

CpCompLR.1 ON “internal compensation completion event of atomic node”

IF LRT.State=ACTIVATED

DO compensated(node)

Atomic node

CpCompLR.2 ON CpCompLDep(path)

DO compensated(path)

Path

CpCompLR.3 ON CpCompLDep(node)

IF node.Type=SCOPE and node.state≠SKIPPED

DO compensated(node)

Concurrent Scope

CpCompLR.4 ON compensated(path)

IF path.IsExclusive and

 Path.superior.state=compensating

DO compensated(path.superior)

Exclusive path

Customised Compensations

CCR.1 ON fail(LRT)

IF “no nodes executing(activated/compensating)”

DO compensate(LRT)

LRT

CCR.2 ON CCDep(node)

IF LRT.State=COMPENSATING and

 node.state=SUCCEEDED

DO compensate(node)

Succeeded atomic

node

CCR.3 ON CCDep(node)

IF LRT.State=COMPENSATING and

 node.state≠SUCCEEDED

DO node.Visited=TRUE;

Non succeeded

Atomic node

Customised Compensation Completion

CCCR.1 ON “compensation completion event of an atomic

 node”

IF LRT.state=COMPENSATING

DO compensated(node);

 node.IsVisited=TRUE;

Atomic

compensating node

CCCR.2 ON CCCDep(LRT)

DO compensated(LRT)

LRT

199

APPENDIX C – An assessment of COMPMOD model based on

Workflow Patterns Initiative

A workflow pattern is (1) Fully Supported (FS) if COMPMOD provides an explicit

operational semantics for the pattern, (2) Implicitly Supported (IS) if the pattern’s

semantics are embedded in the COMPMOD’s management mechanism, (3) Partially

Supported (PS) if partial operational semantics of the pattern is supported, (4) Achievable

(A) if the operational semantics of the pattern are applicable given the current

COMPMOD’s infrastructure, or (5) Not Supported (NS) if the current semantics in

COMPMOD does not support the pattern. Sequence, split and join patterns descriptions

have been listed in Chapter 3. The full description of the rest of the patterns can be found

(Russell et al., 2006).

Pattern Score Motivation

1 (sequence) FS Through activation and completion semantics of execution paths

2 (Parallel Split) FS Through activation semantics of AND scopes

3 (Synchronization) FS Through completion and failure semantics of AND scopes

4 (Exclusive Choice) FS Through activation semantics of XOR scopes with richer semantics

that allows for branches to be executes alternatively

5 (Simple Merge)

8 (Multiple Merge)

NS The patterns are applicable on unstructured workflows to merge

distinct threads of executions. However, a structured counterpart for

these patterns is the XOR-join, and it is supported through

completion, failure and compensation semantics of XOR scopes.

6 (Multi-Choice) FS Through activation semantics of OR scopes.

7 (Structured

Synchronization

Merge)

FS Through completion and failure semantics of OR scopes

9 (Structured

Discriminator)

A Through similar analysis as shown in Example 2, Section 7.4.1,

except that subsequent completions of discriminable paths are

allowed. The decision as to how to respond to failures of subsequent

completions must be made explicit.

10 (Arbitrary Cycles) NS The pattern is applicable to unstructured workflows, to allow for

unstructured loops and iterations in the process.

11 (Implicit Termination) FS Through implicit termination state of components. This pattern

indicates the ability to specify when a process or sub process

terminates its execution, and no remaining work is expected either

now or at any time in the future.

12 (Multiple Instances

without

Synchronization)

13 (Multiple Instances

with a priori Design-

Time Knowledge)

14 (Multiple Instances

with a priori Design-

NS These patterns support multiple instances of executions of the same

activity (sequential or concurrent instances). The patterns describe

different ways of creating multiple instances with the option of

synchronizing them upon completion or not synchronizing them.

These patterns are applicable in loop structures. Loop structures are

planned as the future work of this research.

Appendix C- Assessment of COMPMOD Model Based on WF Patterns Initiative

200

Time Knowledge)

15 (Multiple instances

without a priori run-

time knowledge)

16 (Differed Choice) A This pattern is similar to exclusive choice but the activation of the

chosen path depends on human or operating system interaction. It

could be achievable in COMPMOD by allowing the activation of the

chosen path to be triggered by an internal activation event instead of

the path being activated by an activation dependency.

17 (Interleaved Parallel

Routing)

A This pattern allows mutual exclusion of activation of nodes on

parallel paths, such that only one node on the interleaved rout can be

activated at any time. This is achievable in COMPMOD by defining

activation dependencies between interleaved nodes. Further analysis

is required to study the impact of the pattern on partial

compensations.

18 (Milestone) NS

19 (Cancel Activity) PS Through FailR.1 policy. The pattern allows for an enabled activity to

be withdrawn before execution or disabled after commencing

execution. COMPMOD only supports the cancelation of activated

atomic nodes where cancelations are treated as failures and follow

failure semantics.

20 (Cancel Case) PS Through force-failing mechanism of scopes. The pattern allows for

cancelling a complete process with possibly executing sub processes

based on user interaction. The pattern is achievable through allowing

internal cancellations of activated scopes; however its full support

requires further analysis.

21 (Structured Loop) NS This pattern describes the ability of executing an activity or sub

activities a repeated number of times. Loop structures are planned as

the future work of this research.

22 (Recursion) NS The pattern describes the ability of an activity to invoke itself during

its execution or invoking an ancestor.

23 (Transient Trigger) FS The pattern describes the ability for an activity to be triggered by a

signal from another part of the process. Triggers constitute the main

concept on which COMPMOD is based on. They are referred to as

transient to defer them from the next pattern, and they are transient

according to (Russell et al., 2006) in the sense that they are lost if

not acted on immediately by the receiving activity.

24 (Persistent Triggers) PS Through internal cancellation events of LRT or atomic nodes. The

pattern describes the ability for an activity to be triggered by a signal

from another part of the process or from the external environment.

They are persistent by being retained by the workflow until they can

be acted on by the receiving activity.

25 (Cancel Region) NS The pattern describes the ability of disabling a set of activities that

are not a connected subset of the overall process model.

26 (Cancel Multiple

Instance Activity)

27 (Complete Multiple

Instance Activity)

28 (Blocking

Discriminator)

NS Loop structures and multiple instance activities are planned as the

future work of this research.

29 (Cancelling

Discriminator)

A As discussed in Example 2, Section 7.4.1

Appendix C- Assessment of COMPMOD Model Based on WF Patterns Initiative

201

30 (Structured Partial

Join)

A AS discussed in Example 3, Section 7.4.1

31 (Blocking Partial Join) NS This partial join pattern is intended for loop structures

32 (Cancelling partial

Join)

A Through similar analysis of partial join in Example 3 and

cancellation analysis of undesired activated paths in Example 2 in

section 7.4.1

33 (Generalized AND-

Join)

34 (Static Partial Join for

Multiple Instances)

35 (Cancelling Partial

Join for Multiple

Instances)

36 (Dynamic Partial Join

for Multiple

Instances)

NS These patterns describe variations of join semantics for multiple

instances. Loop structures are planned as the future work of this

research.

37 (Acyclic

synchronization

Merge)

38 (General

Synchronization

Merge)

NS These two patterns are variations of the OR-join and they are

proposed for unstructured workflows. COMPMOD supports only

structured workflows.

39 (Critical Section) NS The pattern allows for two or more connected sub graphs to be

identified as critical sections, such that only one critical section can

be active at any time during runtime.

40 (Interleaved Routing) NS The pattern allows for a set of activities to be executed once such that

no two activities can be active at the same time. Execution progresses

to the next step once all interleaved activities completed their

executions.

41 (Thread Merge)

42 (Thread Split)

NS Loop structures and multiple instance activities are planned as the

future work of this research.

43 (Explicit Termination) NS As described in the reference, this pattern allows the termination of a

process when execution reaches and end node even if there is

remaining work in the process instance, it is assumed that the

remaining work must be cancelled. The description is not clear, and

we assume it is proposed for unstructured workflows.

202

BIBLIOGRAPHY

AIKEN, A., HELLERSTEIN, J. M. & WIDOM, J. 1995. Static analysis techniques for

predicting the behavior of active database rules. ACM Transactions on Database

Systems (ACM TODS), vol. 20, n. 1, pp. 3-41.

AIKEN, A., WIDOM, J. & HELLERSTEIN, J. M. 1992. Behavior of database

production rules: Termination, confluence, and observable determinism. In

Proceedings of the ACM SIGMOD International Conference on Management of

Data.

AGUILAR-SAVEN, RUTH SARA. 2004. Business process modeling: Review and

framework. International Journal of production economics, 90(2), 129-149.

ALI, M. S. & REIFF-MARGANIEC, S. 2012. Autonomous Failure-Handling

Mechanism for WF Long Running Transactions. In Proceedings of SCC 2012,

IEEE, pp. 562-569.

ALONSO, G., CASATI, F., H., KUNO, H & MACHIRAJU, V. 2004. Web Services:

Concepts, Architectures, Applications. Springer.

ANDREWS, T., CURBERA, F., DHOLAKIA, H., GOLAND, Y., KLEIN, J.,

LEYMANN, F., LIU, K., ROLLER, D., SMITH, D. & THATTE, S. 2003.

Business process execution language for web services. version 1.1.

BHIRI, S., GODART, C. & PERRIN, O. 2006a. Transactional patterns for reliable web

services compositions. Proceedings of ICWE06. pp 137-144. ACM.

BHIRI, S., PERRIN, O. & GODART, C. 2005. Ensuring required failure atomicity of

composite Web services. Proceedings of WWW05, pp 138-147, ACM.

BHIRI, S., PERRIN, O. & GODART, C. 2006b. Extending workflow patterns with

transactional dependencies to define reliable composite Web services.

Proceedings of AICT-ICIW '06; pp. 145-145, IEEE.

BOCCHI, L. 2004. Compositional nested long running transactions. Fundamental

Approaches to Software Engineering, 7th International Conference, FASE 2004,

Lecture Notes in Computer Sci., vol. 2984, Springer. 194–208

BROGI, A., & POPESCU, R. 2006. From BPEL processes to YAWL workflows. In

Proceedings of the 3rd International Workshop on Web Services and Formal

Methods (WS-FM’2006), volume 4184 of Lecture Notes in Computer Science,

pages 107–122. Springer-Verlag, 2006.

Bibliography

203

BRUNI, R., BUTLER, M., FERREIRA, C., HOARE, T., MELGRATTI, H. &

MONTANARI, U. 2005a. Comparing two approaches to compensable flow

composition. In CONCUR, LNCS 3653, pp. 383–397.

BRUNI, R., MELGRATTI, H. & MONTANARI, U. 2004. Nested commits for mobile

calculi: extending Join. In proc. Of IFIP-TCS’04, pp. 563-576, Kluwer.

BRUNI, R., MELGRATTI, H. & MONTANARI, U. 2005b. Theoretical foundations for

compensations in flow composition languages. In POPL, pp. 209–220. ACM.

BUTLER, M. & FERREIRA, C. 2004. An operational semantics for StAC, a language

for modelling long-running business transactions. In COORDINATION, LNCS

2949, pp. 87–104, Springer.

BUTLER, M., HOARE, T. & FERREIRA, C. 2005. A trace semantics for long-running

transactions. In 25 Years of CSP, LNCS 3525, pp. 707-711, Springer.

CABRERA, F., COPELAND, G., COX, B., FREUND, T., KLEIN, J., STOREY, T. &

THATTE, S. 2002. Web services transaction (WS-transaction). Technical Report,

IBM developerWorks Report.

CASADO, R., TUYA, J. & YOUNAS, M. 2012. Testing the reliability of web services

transactions in cooperative applications. In 27th ACM Symposium on Applied

Computing (SAC), Trento, Italy.

CEPONKUS, A., FURNISS, P., GREEN, A., DALAL, S. & LITTLE, M. 2002. Business

ransaction protocol. Available from

http://www.oasisopen.org/committees/download.php/1184/2002-

0603.BTP_cttee_spec_1.0.pdf

CHRYSANTHIS, P. & RAMAMRITHAM, K. 1990. ACTA: A framework for specifying

and reasoning about transaction structure and behavior. In Proc. ACM SIGMOD

Symp. on the Management of Data, pp. 194-203.

COLEMAN, J. 2005. Examining BPEL's compensation construct. In: REFT Proceedings

of the Workshop on Rigorous Engineering of Fault-Tolerant Systems, Newcastle

upon Tyne, UK, pp. 122–128

COLOMBO, C. & PACE G. 2013. Recovery within long running transactions. ACM

Computing Surveys, 45(3).

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L. & STEIN, C. 2009. Introduction

to algorithms, MIT press.

DALAL, S., TEMEL, S., LITTLE, M., POTTS, M. & WEBBER, J. 2003. Coordinating

business transactions on the web. Internet Computing, IEEE, 7(1), pp. 30-39.

http://www.oasisopen.org/committees/download.php/1184/2002-0603.BTP_cttee_spec_1.0.pdf
http://www.oasisopen.org/committees/download.php/1184/2002-0603.BTP_cttee_spec_1.0.pdf

Bibliography

204

DAYAL, U., HSU, M., & LADIN, R. 1991. A Transaction Model for Long-Running

Activities. Proc. of the 17th Int’l Conference on Very large Databases, Barcelona,

Spain. pp 113-122.

ELMAGARID, A. K. 1991. Transaction models for advanced database applications.

Morgan Kaufmann.

GARCIA-MOLINA, H., GAWLICK, D., KLEIN, J., KLEISSNER, K. & SALEM, K.

1991. Modeling long-running activities as nested sagas. Data Engineering, 14, pp.

14-18.

GARCIA-MOLINA, H. & SALEM, K. 1987. SAGAS. ACM International Conference on

Management of Data (SIGMOD), pp. 249-259.

GORTON, S., MONTANGERO, C., REIFF-MARGANIEC, S. AND SEMINI, L. 2009.

StPowla: SOA, Policies and Workflows. In ICSOC 2009 Workshops, LNCS 4907,

pp 351-362. Springer.

GRAY, J. 1978. Notes on data base operating systems. In Advanced Course: Operating

Systems, pp. 393–481.

GRAY, J. 1981. The Transaction Concept: Virtues and Limitations. In Proceedings of

the 7th Interna- tional Con[erence on Very Large Database Sys- tems

(Cannes, France, Sept. 9-11). ACM, New York, pp. 144-154.

GREENFIELD, P., FEKETE, A., JANG, J., & KUO, D. 2003. Compensation is not

enough. In 7th IEEE International Enterprise Distributed Object

ComputingConference (EDOC), Brisbane, Australia.

HAERDER, T. & REUTER, A. 1983. Principles of transaction-oriented database

recovery. ACM Computing Surveys (CSUR), 15, pp. 287-317.

JENSEN, K. 1997. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical

Use. Volume 1: Basic Concepts. Monographs in Theoretical Computer Science,

Springer-Verlag.

KHALAF, R., ROLLER, D., & LEYMANN, F. 2009. Revisiting the behavior of fault

and compensation handlers in WS-BPEL. On the Move to Meaningful Internet

Systems: OTM 2009 (pp. 286-303): Springer.

KIEPUSZEWSKI, B., TER HOFSTEDE, A. & BUSSLER, C. 2000. On structured

workflow modelling. . Proc. Int’l Conf. Advanced Information Systems Eng.

(CAiSE), volume 1789, pp. 431–445.

Bibliography

205

KOTZ, A., DITTRICH, K. & MULLE, J. 1988. Supporting semantic rules by a

generalized event/trigger mechanism. Advances in Database Technology—

EDBT'88, pp 76-91.

KÖNIG, D. (2006). R26: Default Compensation Order Conflict. from http://www.oasis-

open.org/committees/download.php/21303/WS_BPEL_review_issues_list.html#I

ssueR26, http://www.oasis-

open.org/committees/download.php/21199/Issue%20R26.ppt

LANEVE, C. & ZAVATTARO, G. 2005. Foundations of web transactions. In

Foundations of Software Science and Computational Structures LNCS 3441, pp.

282-298.

LERNER, B. S., CHRISTOV, S., OSTERWEIL, L. J. , BENDRAOU, R.,

KANNENGIESSER, U., & WISE, A. 2010. Exception Handling Patterns for Process

Modelling. IEEE Transactions on Software Engineering, vol. 183, pp. 162-183, IEEE.

LEYMANN, F. 1995. Supporting business transactions via partial backward recovery in

workflow management systems. In Proceedings of BTW '95, Springer-Verlag,

Berlin.

LEYMANN, F., & ROLLER, D. 2000. Production workflow: concepts and techniques.

Prentice Hall PTR Upper Saddle River.

MAZZARA, M. & LANESE, I. 2006. Towards a unifying theory for web services

composition. In WS-FM, LNCS 4184, pp. 257–272

MEHROTRA, S., RASTOGI, R., SILBERSCHATZ, A. & KORTH, H. F. 1992. A

transaction model for multidatabase systems. In Proceedings of the 12th

International Conference on Distributed Computing Systems (ICDCS), pp. 56–63,

IEEE.

MONTANGERO, C., REIFF-MARGANIEC, S., & SEMINI, L. 2011. Model-driven

development of adaptable service-oriented business processes. In Rigorous

Software Engineering for Service-Oriented Systems. LNCS Vol 6582.Springer.

MOSS, J. E. B. 1982. Nested Transactions and Reliable Distributed Computing. The

MIT Press, Cambridge, MA, USA.

MOSS, J. E. B. 1985. An Approach to Reliable Distributed Computing. The MIT Press

Series in Information Systems.

http://www.oasis-open.org/committees/download.php/21199/Issue%20R26.ppt
http://www.oasis-open.org/committees/download.php/21199/Issue%20R26.ppt

Bibliography

206

MÜLLER, R., GREINER, U. & RAHM, E. 2004. Agentwork: a workflow system

supporting rule-based workflow adaptation. Data & Knowledge Engineering, 51,

pp 223-256.

NEWCOMER, E. & LOMOW, G. 2004. Understanding SOA with web services.

Addison-Wesley Professional.

OASIS. 2007. Web Services Business Process Execution Language (WS-BPEL), Version

2.0. From http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

ÖZSU, M. T. & VALDURIEZ, P. 1991. Principles of distributed database systems.

Prentice Hall (Englewood Cliffs, NJ).

PAPAMARKOS, G., POULOVASSILIS, A. & WOOD, P. T. 2006. Event-condition-

action rules on RDF metadata in P2P environments. Computer Networks, 50(10),

pp 1513-1532.

PAPAZOGLOU, M. P. & GEORGAKOPOULOS, D. 2003. Service-oriented computing.

Communications of the ACM, 46, pp 25-28.

PATON, N. W. 1999. Active rules in database systems, Springer Verlag, New York, NY.

PELTZ, C. 2003. Web Services Orestrestration and Choreography. Computer, vol. 36,

no. 10, pp. 46-52.

QIU, Z., WANG, S., PU, G. & ZHAO, X. 2005. Semantics of BPEL4WS-like fault and

compensation handling. FM 2005: Formal Methods, pp 632-633.

REICHERT, M., & DADAM, P. 1997. A Framework for Dynamic Changes in Workflow

Management Systems. In DEXA Workshop 1997, pp. 42-48, IEEE.

REICHERT, M., & DADAM, P. 1998. ADEPT flex - Supporting Dynamic Changes of

Workflows Without Loosing Control. Journal of Intelligent Information Systems,

Vol. 10; pp. 93-129, Springer.

REICHERT, M., & WEBER, B. 2012. Enabling flexibility in process-aware information

systems. Springer.

ROBERTS, J. & SRINIVASAN, K. 2001. Tentative hold protocol Part 1: White Paper.

W3C Note, 28 November 2001.

RUSSELL, N., TER HOFSTEDE, A. H. M. & MULYAR, N. 2006. Workflow

controlflow patterns: A revised view. Technical Report BPM-06- 22; BPM

Centre.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Bibliography

207

RUSSELL, N., VAN DER AALST, W.M.P., & TER HOFSTEDE, A.H.M. 2006.

Exception Handling Patterns in Process-Aware Information Systems. In Proc.

CAiSE'06, pp. 288-302.

SUWA, M., SCOTT, A. C. & SHORTLIFFE, E. H. 1982. An approach to verifying

completeness and consistency in a rule-based expert system. Technical Report:

CS-TR-82-922, pp. 16-21, 1982, Stanford University, Stanford, CA, USA.

THATTE, S. 2001. XLANG: Web services for business process design. Microsoft

Corporation.

THATTE, S., ROLLER, D. 2003. Default compensation order. From http://www.oasis-

open.org/committees/download.php/4449/Default%20Compensation%20Order.pp

t

VAN DER AALST, WMP. 1997. Verification of workflow nets. In: Azema P, Balbo G

(eds) Application and theory of Petri nets. Lecture notes in computer science, vol

1248. springer-verlag, Berlin, pp 407-426.

VAN DER AALST, WMP. 1998. The application of Petri nets to workflow management.

Journal of circuits, systems, and computers, 8(01), pp 21-66.

VAN DER AALST, WMP., BARROS, A., TER HOFSTEDE, A. & KIEPUSZEWSKI,

B. 2000. Advanced workflow patterns. Proceeding of Fifth IFICIS International

conference on Cooperative Information systems (CoopIS'2000), Springer, 18-29.

VAN DER AALST, WMP. & TER HOFSTEDE, AHM. 2005. YAWL: yet another

workflow language. Information Systems, 30(4), 245-275.

VAN DER AALST, WMP., TER HOFSTEDE, AHM., KIEPUSZEWSKI, B. &

BARROS, A. P. 2003. Workflow patterns. Distributed and parallel databases, 14,

5-51.

VAN DER AALST, WMP., VAN HEE, KM., TER HOFSTEDE, AHM., SIDOROVA,

N., VERBEEK, HMW., VOORHOEVE, M., & WYNN, MT. 2011. Soundness of

workflow nets: classification, decidability, and analysis. Formal Aspects of

Computing, 23(3), pp 333-363.

WEIKUM, G. & SCHEK, H.-J. 1992. Concepts and applications of multilevel

transactions and open nested transactions. Morgan Kaufmann Publishers Inc, pp.

515-553.

WHITE, S. A. 2004. Process modeling notations and workflow patterns. In L. Fischer,

ed., ‘Workflow Handbook 2004’, Future Strategies Inc., Lighthouse Point, FL,

USA., pp. 265–294.

http://www.oasis-open.org/committees/download.php/4449/Default%20Compensation%20Order.ppt
http://www.oasis-open.org/committees/download.php/4449/Default%20Compensation%20Order.ppt
http://www.oasis-open.org/committees/download.php/4449/Default%20Compensation%20Order.ppt

Bibliography

208

WESKE, M. 2001. Formal foundation and conceptual design of dynamic adaptations in

a workflow management system. In Proceedings of the Thirty-Fourth Annual

Hawaii International Conference on System Science (HICSS-34). IEEE Computer

Society Press, Los Alamitos, California.

WIDOM, J. & CERI, S. 1996. Active database systems: Triggers and rules for advanced

database processing, Morgan Kaufmann Pub.

WIERINGA, R. 2003. Design methods for reactive systems: Yourdon, statemate, and the

UML. San Mateo, CA: Morgan Kaufmann.

YAN, S., LI, Y., DENG, S. & WU, Z. 2005. A transaction management framework for

service-based workflow. Proceedings of the International Conference on Next

Generation Web Services Practices, pp 377-381.

ZHANG, A., NODINE, M., BHARGAVA, B. & BUKHRES, O. 1994. Ensuring relaxed

atomicity for flexible transactions in multidatabase systems. In Proc. ACM

SIGMOD, pp. 67–78.

